
Retrieving Data

I’ve split our examination of data retrieval into two main sections. In this first, we examine
the data provider classes typically used in the data retrieval process and their properties.
These are the primary data provider classes we cover:

The OracleConnection class: Used to establish and represent the connection to the data-
base.

The OracleCommand class: Acts as a broker between the application and the database. This
class is used to pass commands to the database and to return results from the database to
the application.

The OracleParameter class: Used to represent a parameter for an OracleCommand or
DataSet column. You use this class a great deal, especially when you’re working with bind
variables.

The OracleDataReader class: Represents a forward-only, read-only result set and is
returned by the OracleCommand class’s ExecuteReader method.

Where appropriate, I provide self-contained examples of how to use each class using the
ODP.NET provider, but I also point out any essential differences in support or behavior if you
happen to be using the Microsoft provider.

■NOTE In this chapter, I focus on the data retrieval aspects of these classes. Chapter 3 covers the data
manipulation aspects. Also, I deal with certain properties in dedicated chapters. For example, in Chapter 6,
we discuss Oracle’s support for large objects; properties such as the InitialLOBFetchSize are addressed
there.

In the second section of this chapter, I put this knowledge to work with some complete
examples of data retrieval that use .NET Windows Forms or console applications. You’ll see
some of the key data provider classes in action in working projects. I also show the important
task of how to perform effective data querying for the Oracle database; I point out singulari-
ties in its architecture and explore the expected mode of operation that dictates how you
should write your .NET data code.

49

C H A P T E R 2

■ ■ ■

4258_Ch02_CMP1 9/16/04 4:14 PM Page 49

If you’re accustomed to working with database systems other than Oracle, it’s important
to understand that Oracle behaves, in all likelihood, differently from those systems. Its archi-
tecture is unique, and you need to program in a way that properly exploits this architecture; if
you don’t, you’ll very quickly run into issues with code that performs poorly and doesn’t scale,
or with code that doesn’t behave as you expect it to.

In this chapter, the architecture issue I address is using the Oracle shared pool effectively
by using bind variables in your code. This is a massive factor in the drive to build scalable,
high-performance Oracle .NET applications.

■NOTE In chapter 3, I discuss transactions, for which you’ll need to properly understand Oracle’s locking
model and multiversion read consistency architecture.

Using the Application Templates
Before jumping into the sample code and the data provider classes, we’ll look at the templates
I use to create the code in this chapter as well as the remainder of the book. I use these tem-
plates as the basis for each of the projects. You can access them and the complete projects
from this chapter’s folder in the Downloads section of the Apress website (www.apress.com).

The Console Application Template
The template I use for the console applications in this chapter is a basic console application.
I added a reference to the data provider assembly, which we discussed in Chapter 1, to the
project, and I included the namespaces for the data provider in the beginning of the code file.

Listing 2-1 shows the code I used for the console template.

Listing 2-1. The Console Application Template Code

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

namespace ConsoleTemplate
{
/// <summary>
/// Summary description for Class1.
/// </summary>
class Class1
{
/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main(string[] args)

CHAPTER 2 ■ RETRIEVING DATA50

4258_Ch02_CMP1 9/16/04 4:14 PM Page 50

{
//
// application code is inserted here
//

}
}

}

The Windows Forms Application Template
Like the console application template, the Windows Forms application template is simply
a basic Windows application. I added a reference to the data provider to the project, and I
included the data provider namespaces in the form code file.

Listing 2-2 illustrates the code I used in the template. Due to the nature of a Windows
Forms–based application, most of the code you’ll create resides in event handlers for specific
components you create on the form as you develop the samples. Of course, other than the
included namespaces, this code is generated by Visual Studio.

Listing 2-2. The Windows Forms Application Template Code

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

namespace WindowsTemplate
{
/// <summary>
/// Summary description for Form1.
/// </summary>
public class Form1 : System.Windows.Forms.Form
{
/// <summary>
/// Required designer variable.
/// </summary>
private System.ComponentModel.Container components = null;

public Form1()
{
//
// Required for Windows Form Designer support
//
InitializeComponent();

CHAPTER 2 ■ RETRIEVING DATA 51

4258_Ch02_CMP1 9/16/04 4:14 PM Page 51

//
// TODO: Add any constructor code after InitializeComponent call
//

}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{
if(disposing)
{
if (components != null)
{
components.Dispose();

}
}
base.Dispose(disposing);

}

#region Windows Form Designer generated code
/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{
this.components = new System.ComponentModel.Container();
this.Size = new System.Drawing.Size(300,300);
this.Text = "Form1";

}
#endregion

/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{
Application.Run(new Form1());

}
}

}

The initial appearance of the Windows Forms application template in the Visual Studio
designer is illustrated in Figure 2-1. As you can see, the reference to the data provider is listed
under the References node in the Solution Explorer.

CHAPTER 2 ■ RETRIEVING DATA52

4258_Ch02_CMP1 9/16/04 4:14 PM Page 52

Figure 2-1. The Windows Forms application template in the designer

Creating the Get Employees Sample
In order to illustrate the basics of data retrieval, I’ve created a simple console application,
based on the console application template developed in Listing 2-1, that retrieves employee
information from the database. I utilize the EMP and DEPT tables from the SCOTT schema in
this sample. Listing 2-3 contains the code that accomplishes this for me. Because the template
contains everything I need, I only need to create the Main method.

Listing 2-3. The Get Employees Sample Main Method

static void Main(string[] args)
{
// create and open a connection object
string connstr = "User Id=scott; Password=tiger; Data Source=oranet";
OracleConnection con = new OracleConnection(connstr);
con.Open();

// the sql statement to retrieve the data from the tables
string sql = "select a.empno, a.ename, a.job, b.dname ";
sql += "from emp a, dept b ";
sql += "where a.deptno = b.deptno ";
sql += "order by a.empno";

CHAPTER 2 ■ RETRIEVING DATA 53

4258_Ch02_CMP1 9/16/04 4:14 PM Page 53

// create the command object
OracleCommand cmd = new OracleCommand(sql, con);

// execute the command and get a data reader
OracleDataReader dr = cmd.ExecuteReader();

// display the results to the console window
// use a tab character between the columns
while (dr.Read())
{
Console.Write(dr[0].ToString() + "\t");
Console.Write(dr[1].ToString() + "\t");
Console.Write(dr[2].ToString() + "\t");
Console.WriteLine(dr[3].ToString());

}

// close and dispose of the objects
dr.Close();
dr.Dispose();
cmd.Dispose();
con.Close();
con.Dispose();

}

When this application runs, it outputs the data to the console window as illustrated in
Listing 2-4. Although this is a simple application, the classes and techniques I use here are
used in virtually all of the sample code you develop later.

Listing 2-4. The Get Employees Output

C:\My Projects\ProOraNet\Oracle\C#\Chapter02\GetEmployees\bin\Debug>
GetEmployees.exe
7369 SMITH CLERK RESEARCH
7499 ALLEN SALESMAN SALES
7521 WARD SALESMAN SALES
7566 JONES MANAGER RESEARCH
7654 MARTIN SALESMAN SALES
7698 BLAKE MANAGER SALES
7782 CLARK MANAGER ACCOUNTING
7788 SCOTT ANALYST RESEARCH
7839 KING PRESIDENT ACCOUNTING
7844 TURNER SALESMAN SALES
7876 ADAMS CLERK RESEARCH
7900 JAMES CLERK SALES
7902 FORD ANALYST RESEARCH
7934 MILLER CLERK ACCOUNTING

C:\My Projects\ProOraNet\Oracle\C#\Chapter02\GetEmployees\bin\Debug>

CHAPTER 2 ■ RETRIEVING DATA54

4258_Ch02_CMP1 9/16/04 4:14 PM Page 54

Now that you have seen a working data retrieval example, we’ll step through the data
provider classes and their properties in more detail.

Examining the Data Provider Classes
In this section, you examine the primary or backbone classes exposed by the data provider.
You’ll become very familiar with these classes because they are used in virtually every applica-
tion that retrieves data from the database. Let’s begin exploring with the OracleConnection
class I introduced in Chapter 1.

The OracleConnection Class
In order to interact with the database, you must first establish a connection. The Oracle-
Connection class is the class you use for this purpose, and you’ll use it in every application
you develop.

The OracleConnection class exposes two constructors: the first takes no parameters,
whereas the second accepts a string parameter. This string parameter represents a database
connection string. Typically you’ll use this second constructor in your code since you’ll pass a
connection string to the constructor as you did in the Get Employees sample in the previous
section.

The following code snippet illustrates how to use these two constructors. In this snippet,
the connection string is passed directly to the constructor rather than a string variable being
created and then passed as would be typical in an application.

// the parameterless constructor
OracleConnection con = new OracleConnection();

// passing the connection string to the constructor
OracleConnection = new OracleConnection("User Id=scott; Password=tiger;�
Data Source=oranet");

The ConnectionString Property
The ConnectionString property is a read-write string property. You can use this property to
retrieve the value of the ConnectionString as you did in Chapter 1 or you can use it to set the
value of the connection string.

An interesting attribute of this property is that if the connection hasn’t been opened, the
value for the password displays. If the connection has been opened, the value doesn’t display.
This is illustrated in the ConnectionString project, which is available in the code download for
this chapter.

The Main method for the project is presented in Listing 2-5. In addition, in this sample, I
use the default constructor and set the ConnectionString via the property instead of using the
constructor. For additional details on the ConnectionString, see the data provider documenta-
tion. I use some of the more advanced features of the ConnectionString in Chapter 7, when we
discuss advanced connection techniques.

CHAPTER 2 ■ RETRIEVING DATA 55

4258_Ch02_CMP1 9/16/04 4:14 PM Page 55

Listing 2-5. The ConnectionString Sample Main Method

static void Main(string[] args)
{
// create a connection object
string connstr = "User Id=scott; Password=tiger; Data Source=oranet";
OracleConnection con = new OracleConnection();

// set the connection string
con.ConnectionString = connstr;

// display the ConnectionString property to the console
// this will show the password
Console.WriteLine("Connection String 1: {0}", con.ConnectionString);

// open the connection
con.Open();

// display the ConnectionString property to the console
// this will not show the password
Console.WriteLine("Connection String 2: {0}", con.ConnectionString);

// close the connection
con.Close();

// display the ConnectionString property to the console
// this will not show the password
Console.WriteLine("Connection String 3: {0}", con.ConnectionString);

// clean up the connection object
con.Dispose();

}

When this application executes, the password used in the connection string displays
initially. However, once the connection opens, the password no longer displays, even if the
connection is closed. Listing 2-6 contains the output for this sample illustrating this behavior.

Listing 2-6. The ConnectionString Sample Output

C:\My Projects\ProOraNet\Oracle\C#\Chapter02\ConnectionString\bin\Debug>
ConnectionString.exe
Connection String 1: User Id=scott; Password=tiger; Data Source=oranet
Connection String 2: User Id=scott; Data Source=oranet
Connection String 3: User Id=scott; Data Source=oranet

C:\My Projects\ProOraNet\Oracle\C#\Chapter02\ConnectionString\bin\Debug>

CHAPTER 2 ■ RETRIEVING DATA56

4258_Ch02_CMP1 9/16/04 4:14 PM Page 56

The ConnectionTimeout Property
For connection requests that use the connection pool, this int property specifies, in seconds,
the length of time that the data provider waits to acquire a connection from the connection
pool. For connections that don’t use pooling, this parameter has no effect. If the value of this
property is set to zero, the provider should wait indefinitely. This is illustrated in the following
code snippet:

// connection is named con
// set to wait indefinitely
con.ConnectionTimeout = 0;

// get the ConnectionTimeout property
int timeout = con.ConnectionTimeout;

The DataSource Property
The DataSource property is a read-only string property. The value of this property corre-
sponds to the TNS alias (the entry in the tnsnames.ora file that we discussed in Chapter 1)
used to create the connection. As you’ll see in Chapter 7, it is also possible to create a connec-
tion without using the tnsnames.ora file. The following code snippet illustrates how to use of
this property:

// use the standard connect string
string connstr = "User Id=scott; Password=tiger; Data Source=oranet";
OracleConnection con = new OracleConnection(connstr);

// get the data source property
// the value will be “oranet”
string ds = con.DataSource;

The ServerVersion Property
This read-only string property represents the version of the Oracle server software. As you saw
in Chapter 1, the value of this property on my system is 10.1.0.2.0. Of course, your system has
a different value if you’re using a different version of the server. The following code snippet
illustrates retrieving the value of this property:

// assumes connection is con
string serverVersion = con.ServerVersion;

The State Property
The read-only State property returns a value from the ConnectionState enumeration. The
returned value is either ConnectionState.Open or ConnectionState.Closed. You can use this

CHAPTER 2 ■ RETRIEVING DATA 57

4258_Ch02_CMP1 9/16/04 4:14 PM Page 57

property to detect the connection state of the OracleConnection object. The following code
snippet illustrates a possible use of this property:

if (con.State == ConnectionState.Open)
{
// perform some action

};

The BeginTransaction Method
By default, transactions are explicit in the data provider. That is, a transaction is started, work
is performed, and then the transaction is committed. If you wish to specifically start a transac-
tion, the BeginTransaction method is the method to use. The method returns an object of type
OracleTransaction. I discuss transactions and the OracleTransaction class in more detail in
Chapter 3.

The Close Method
When you finish using a connection, use the Close method to terminate it. There are two
important aspects to using the Close method. First, if you’re using connection pooling, the
connection returns to the pool. If you aren’t using connection pooling, the connection simply
closes. If the Connection Lifetime attribute of the ConnectionString is exceed, the connection
may still close. See the data provider documentation for more details about the Connection
Lifetime attribute.

Second, any uncommitted transactions are rolled back. This means that if you start a
transaction and close the connection associated with it, any uncommitted work is discarded.
The following code illustrates how to use this method:

// assume connection is called con
con.Close();

The Open Method
The Open method is responsible for actually creating (or opening) the connection to the data-
base. If connection pooling is enabled, the Open method attempts to acquire the connection
from the pool; otherwise a new connection is created. Calling this method is simple, as illus-
trated here:

// create a connection object
string connstr = "User Id=scott; Password=tiger; Data Source=oranet";
OracleConnection con = new OracleConnection(connstr);

// open the connection
con.Open();

The OpenWithNewPassword Method
Use this method to open a connection to the database with a new password, as its name sug-
gests. You use this method when the database administrator enables password expiration. For
more information on this method, see Chapter 7.

CHAPTER 2 ■ RETRIEVING DATA58

4258_Ch02_CMP1 9/16/04 4:14 PM Page 58

The OracleCommand Class
Like the connection class, the command class is a root class of sorts since so many operations
begin with the instantiation of a command class object. All of the data retrieval operations I
present involve an instance of the command class. The OracleCommand class functions as a bro-
ker, in the sense that it is responsible for passing your command to the database and returning
results (if any) to your application. It typically returns the data as an OracleDataReader object.
I’ll highlight other return types, such as scalar values or output parameters, as I use them.

The OracleCommand class provides three constructors you can use to instantiate a new
instance of the class. The most basic constructor is parameterless and simply creates an
instance of the class with all default values for its properties. The second constructor allows
you to specify a text parameter that is used by the command object as the command to be
executed. The final constructor allows you to specify both the command text and the connec-
tion object. Listing 2-7 illustrates the basic ways to create a command object.

Listing 2-7. The OracleCommand Constructors

// create a basic connect string to connect to our standard database
string connStr = "User Id=oranetuser;Password=demo;Data Source=oranet";
OracleConnection conn1 = new OracleConnection(connStr);

// The basic constructor
OracleCommand cmd1 = new OracleCommand();

// Specifying command text in the constructor
OracleCommand cmd2 = new OracleCommand("select user from dual");

// we can assign the connection property to the command
// object even if we have not yet opened the connection
// to the database.
OracleCommand cmd3 = new OracleCommand("select user from dual",conn1);

// specifying the command text is optional
OracleCommand cmd4 = new OracleCommand(null,conn1);

As you can see, if you use either of the first two constructors, you aren’t able to specify the
connection to used for your command object in the constructor call. When using either of
these constructors, you can, however, set the connection using the Connection property,
which is exposed by the command object. There are six properties of the OracleCommand class
that I examine in this section:

Connection: Represents the connection to the database.

CommandType: Used to specify how the CommandText should be interpreted.

CommandText: Used to specify the actual command.

FetchSize: Used to control how much data is retrieved for each database round trip.

RowSize: Used to control how much data is retrieved for each database round trip; similar
to the FetchSize property.

BindByName: Used to indicate whether bind variables are specified in order or by name.

CHAPTER 2 ■ RETRIEVING DATA 59

4258_Ch02_CMP1 9/16/04 4:14 PM Page 59

The Connection Property
Most operations take place in the context of a connection to a database; you use the Connec-
tion property to specify or retrieve the OracleConnection object associated with the command
object. Therefore, this property is read-write.

If I continue the analogy of the OracleCommand object as a broker, you can think of the con-
nection the Connection property represents as the channel through which the command and
results are passed. If the OracleCommand object hasn’t yet been assigned an Oracle connection,
the value of this property will be null. The value of this property may change during the life-
time of the OracleCommand object; however, the command object may assign only a single
connection at any given point. This property may be assigned regardless of whether the con-
nection state is open or closed as illustrated by the third constructor in Listing 2-7.

Listing 2-8 illustrates how to set and retrieve the OracleCommand Connection property.

Listing 2-8. The OracleCommand Connection Property

// create a connection object
string connStr = "User Id=oranetuser;Password=demo;Data Source=oranet";
OracleConnection con1 = new OracleConnection(connstr);
con1.Open();

// create a command object and set the connection property
OracleCommand cmd = new OracleCommand();
cmd.Connection = con1;

// retrieve the connection and assign it to new connection object
OracleConnection con2 = cmd.Connection;

You can also set the Connection property of the OracleCommand object via the Properties
window in Visual Studio at design time, if you want to. In order to do this, simply drag an
OracleConnection and an OracleCommand from the toolbox onto a form. Select the Oracle-
Command object that was dragged onto the form and click the drop-down list box for the
Connection property in the Properties window. Expand the Existing node in the drop-down
list box and select the OracleConnection object. This process is illustrated in Figure 2-2.

Figure 2-2. Setting the Connection property using the Visual Studio Properties window

CHAPTER 2 ■ RETRIEVING DATA60

4258_Ch02_CMP1 9/16/04 4:14 PM Page 60

CHAPTER 2 ■ RETRIEVING DATA 61

The CommandType Property
As I mentioned when I started discussing the OracleCommand class, your command can repre-
sent a table name, a SQL statement, or a stored procedure. The property you use to indicate to
the data provider which type of command you’ll use is the CommandType property. The follow-
ing are the valid values for this read-write property:

CommandType.TableDirect: Indicates that the value of the CommandText property is the
name of a table or view.

CommandType.Text: Indicates that the value of the CommandText property is a SQL statement.

CommandType.StoredProcedure: Indicates that the value of the CommandText property is a
stored procedure or function.

■NOTE The CommandType.TableDirect isn’t supported in the current version of the Microsoft provider.

The default value for this property is CommandType.Text, which represents a SQL state-
ment. Therefore, you don’t need to specify a value for this property if your code won’t use a
SQL statement to retrieve the data. Listing 2-9 illustrates the simple process of setting this
property directly in code.

Listing 2-9. Setting the CommandType Property Directly in Code

// Use the basic constructor
OracleCommand cmd1 = new OracleCommand();
OracleCommand cmd2 = new OracleCommand();

// indicate that we will be retrieving a
// single table with cmd1
cmd1.CommandType = CommandType.TableDirect;

// indicate that we will be using a
// sql statement on cmd2
// this is optional since it is the default
cmd2.CommandType = CommandType.Text;

Of course, you can also access this property from the Visual Studio Properties window in
the Windows Forms designer. Figure 2-3 illustrates how to set this property at design time
using the Properties window.

4258_Ch02_CMP1 9/16/04 4:14 PM Page 61

Figure 2-3. Setting the CommandType property at design time

The CommandText Property
The actual command the OracleCommand object executes is defined by the CommandText
property. This is a read-write property. The manner in which this property is interpreted is
influenced by the CommandType property. If the CommandType property is set to CommandType.Text
or left to its default, then the value of this property is interpreted as a SQL statement. This is
probably the most common use of this property.

In this section, you’ll learn to use this property for a SQL statement and for a table name.
Chapter 5 illustrates how to use this property when you’re working with stored procedures or
functions.

As you saw in the Get Employees sample at the beginning of the chapter, setting this
property is a simple process. Listing 2-10 illustrates a similar method of setting this property
directly in code; it also explicitly sets the CommandType property.

Listing 2-10. Setting the CommandText Property

// create a command object
OracleCommand cmd = new OracleCommand();

// set the command type
cmd.CommandType = CommandType.Text;

// set the command text
cmd.CommandText = “select ename from emp order by ename”;

As with the CommandType property, you can set this property from within the Properties
window inside Visual Studio. Figure 2-4 illustrates how to set this property value to TableDirect
at design time through the Properties window rather than directly in the code.

CHAPTER 2 ■ RETRIEVING DATA62

4258_Ch02_CMP1 9/16/04 4:14 PM Page 62

Figure 2-4. Setting the CommandType property to TableDirect

Figure 2-5 illustrates how to set the CommandText property once you’ve set the CommandType
property to Text. You can simply type the SQL statement directly into the CommandText text box
in the Properties window in the Visual Studio designer.

Figure 2-5. Setting the CommandText property in Visual Studio

The FetchSize Property
When data is fetched from the Oracle server, it’s stored in client memory for processing. The
FetchSize property determines the size of the cache used for this purpose. This read-write
property specifies the size (in bytes) of the cache on the client where data fetched from the
server will be stored. The default value is 65,536 bytes or 64K.

■NOTE This property isn’t supported in the current version of the Microsoft provider. This value specifies
the size of the cache that is used for each server round-trip. It doesn’t specify the maximum size of data that
may be returned to the client.

CHAPTER 2 ■ RETRIEVING DATA 63

4258_Ch02_CMP1 9/16/04 4:14 PM Page 63

You use this property to tune the performance of data retrieval from the server. I explore
how to use this property in detail later in the chapter.

Note that this property is specific to each OracleCommand object. Nothing prevents multiple
OracleCommand objects from having different values for this property within an application, or
even within the same method. The OracleDataReader class, which I discuss later in this chapter,
inherits the value of this property. Therefore, it is possible to override this value if you also set it
on the data reader object. Like the other properties of the OracleCommand object, you may set
this property directly in code or via the visual interface provided by Visual Studio. Setting this
property directly in code is illustrated by the following code snippet:

// Use the basic constructor
OracleCommand cmd1 = new OracleCommand();

// set the fetch size to 128K
cmd1.FetchSize = 131072;

Figure 2-6 illustrates how you set the value of this property at design time via the Visual
Studio interface.

Figure 2-6. Setting the FetchSize property to 128K in the Properties window

The RowSize Property
In contrast to the other properties of the OracleCommand class that you’ve been exploring, the
RowSize property is read-only. Initially, the value of this property is zero, and you set it after a
command that returns a result set execute. For commands that don’t return results, this param-
eter has no meaning. Like the FetchSize property, the value for this property is specified in
bytes. You may use this parameter in conjunction with the FetchSize property to optimize the
fetching of data from the server. Later in the chapter, you’ll utilize this parameter, along with
the FetchSize parameter, to control the number of rows retrieved from the server for each
round-trip. The following code snippet illustrates how to retrieve this property after you exe-
cute a command that returns results.

CHAPTER 2 ■ RETRIEVING DATA64

4258_Ch02_CMP1 9/16/04 4:14 PM Page 64

// assume we have a valid connection
OracleCommand cmd1 = new OracleCommand();

// execute a query here…

// retrieve the rowsize after execution
long rowSize = cmd1.RowSize();

■NOTE This property isn’t supported in the current version of the Microsoft provider. Since the value
of this property is only meaningful after an execute call on the command object, it isn’t available in the
Properties window inside Visual Studio.

The BindByName Property
When parameters in a SQL statement are used instead of literal values, the BindByName
property influences the manner in which this occurs. This property is a read-write Boolean
property. When you substitute parameter values into variables at run time, there are two
methods in which this operation may occur: you may substitute the parameter values in order
or by name. The default value of false for this parameter indicates that parameters should be
substituted in order at runtime. What this means is that parameters specified in the parame-
ters collection are substituted into the SQL statement in the order in which they were added to
the collection. This is the default behavior, and it’s the method you’ll use in virtually all of the
code in this book. If you prefer to use the BindByName property set to true, by all means use it.
Some people feel that binding by name makes the code more readable and easier to under-
stand. Perhaps it is just my background, but I prefer to bind by position rather than by name.
The following code snippet illustrates how to set this property.

// create a command object
OracleCommand cmd1 = new OracleCommand();

// indicate that we will bind using parameter
// names rather than position
// default for BindByName is false
cmd1.BindByName = true;

■NOTE This property isn’t supported in the current version of the Microsoft provider.

CHAPTER 2 ■ RETRIEVING DATA 65

4258_Ch02_CMP1 9/16/04 4:14 PM Page 65

The OracleParameter and OracleParameterCollection Classes
In the Introduction, I mentioned the importance of using bind variables in your code. In a little
while, you’re going to look at that in detail; it’s the OracleParameter class that is the mechanism
through which you accomplish this task. As its name implies, the OracleParameterCollection
class is a collection class that holds the various OracleParameter objects associated with an
instance of the OracleCommand class. You access the OracleParameterCollection class via the
Parameters property of the command object. The parameter collection class behaves exactly
like any other .NET collection class and provides the expected methods (such as Add) to work
with objects in the collection. The use of this class is not limited to bind variables only. You can
also use it to pass parameters to PL/SQL procedures and functions; for specifics, see Chapter 5.

The OracleParameter class provides 9 constructors and 15 properties. In this section, I’ll
show you 9 of the 15 properties; those I don’t address here I cover in Chapter 3. The 6 proper-
ties not covered here are related to array operations. Here are those 9 properties:

Direction: Indicates the parameter direction (that is, input, output, or both).

DbType: Indicates the data type of the parameter as defined by the DBType .NET Framework
enumeration.

OracleDbType: Indicates the data type of the parameter as defined by the ODP.NET
OracleDbType enumeration.

ParameterName: Simply indicates the name of the parameter.

Precision: Indicates the maximum number of digits in an OracleDbType.Decimal parameter.

Scale: Indicates the number of digits in the decimal portion of an OracleDbType.Decimal
parameter.

Size: Specifies the maximum number of characters in a variable length data type such as
varchar2.

Status: Indicates the parameter status, such as a null, was fetched from the database.

Value: Indicates the actual value of the parameter.

■NOTE The OracleDbType and Status properties aren’t supported in the current version of the Microsoft
provider.

Although the OracleParameter class provides nine constructors for you to use, typically
you only need two or three of them on a regular basis. For situations in which you require val-
ues other than the default values, you’ll find the other constructors are available. Of course, it’s
always possible to create a basic parameter and specify the nondefault property values after
instantiation via the properties exposed by the class. The default values for all properties are
listed in the Oracle Data Provider for .NET documentation, which is installed as part of the
data provider software installation. Listing 2-11 contains a series of snippets that illustrate
how to use each of the constructors available.

CHAPTER 2 ■ RETRIEVING DATA66

4258_Ch02_CMP1 9/16/04 4:14 PM Page 66

Listing 2-11. The OracleParameter Class Constructors

// this sample illustrates the usage of the
// constructors made available by the OracleParameter
// class

// the basic "default" constructor
OracleParameter p1 = new OracleParameter();

// this constructor allows us to specify
// the parameter name as well as the Oracle data type
OracleParameter p2 = new OracleParameter("p2", OracleDbType.Varchar2);

// this constructor allows us to specify
// the parameter name and the value
OracleParameter p3 = new OracleParameter("p3", "Parameter 3");

// this constructor allows us to specify
// the parameter name, the data type,
// and the direction of the parameter
// here we set the direction to input,
// which is the default
OracleParameter p4 = new OracleParameter("p4",
OracleDbType.Varchar2, ParameterDirection.Input);

// this constructor allows us to specify
// the parameter name, the data type,
// the value, and the direction of the parameter
OracleParameter p5 = new OracleParameter("p5",
OracleDbType.Varchar2, "Parameter 5",
ParameterDirection.Input);

// this constructor allows us to specify
// the parameter name, the data type,
// and the size
OracleParameter p6 = new OracleParameter("p6",
OracleDbType.Varchar2, 32);

// this constructor allows us to specify
// the parameter name, the data type,
// the size, and the source column
// the source column is used with the DataTable
// and DataSet objects
OracleParameter p7 = new OracleParameter("p7",
OracleDbType.Varchar2, 32, "SourceColumn");

// this constructor allows us to specify
// the parameter name, the data type,

CHAPTER 2 ■ RETRIEVING DATA 67

4258_Ch02_CMP1 9/16/04 4:14 PM Page 67

// the size, the direction, a null indicator,
// the precision, the scale, the source column,
// the source version, and the value
// this constructor is the "fully equipped" constructor
OracleParameter p8 = new OracleParameter("p8",
OracleDbType.Varchar2, 32, ParameterDirection.Input,
false, 0, 0, "SourceColumn", DataRowVersion.Current,
"");

// this constructor allows us to specify
// the parameter name, the data type, the size,
// the value and the direction
OracleParameter p9 = new OracleParameter("p9",
OracleDbType.Varchar2, 32, "Parameter 9",
ParameterDirection.Input);

For most code, the basic constructors are typically sufficient; however, you may encounter
times when you may want to use the more verbose versions of the constructors. This is a cod-
ing style issue. Either you set the appropriate properties at instantiation or you set them after
instantiation via the individual properties of the class. In this book, most of your code uses the
default values, and, therefore, it mostly uses the “basic” constructors.

The properties that we discuss here are all accessible from within the Visual Studio Win-
dows Forms designer environment. You use the OracleParameter Collection Editor to add
parameters and set property values at design time from within Visual Studio. To access the
editor, select an OracleCommand object and click the ellipses (…) in the Parameters property
box. Once inside the editor, simply click the Add button to create a new parameter and set the
property values. Figure 2-7 illustrates how to perform these tasks in Visual Studio. I’ll explore
using the parameter properties in more depth in the “Tying It All Together” section at the end
of this chapter.

Figure 2-7. Creating a parameter and the property values in the Visual Studio designer

CHAPTER 2 ■ RETRIEVING DATA68

4258_Ch02_CMP1 9/16/04 4:15 PM Page 68

The Direction Property
The Direction property is a read-write property that indicates whether the parameter is an
input parameter, an input/output parameter, an output parameter, or a return value from a
stored function. The default value of this parameter is ParameterDirection.Input. You can
specify the value for this property as part of a constructor, or you can set it as a simple prop-
erty on an existing object. Listing 2-12 illustrates the possible values for this property.

Listing 2-12. The Direction Property Values

OracleParameter p1 = new OracleParameter();

// setting the possible direction property values
p1.Direction = ParameterDirection.Input;
p1.Direction = ParameterDirection.InputOutput;
p1.Direction = ParameterDirection.Output;
p1.Direction = ParameterDirection.ReturnValue;

The DbType Property
The DbType property is an implementation of the System.Data.DbType property. This read-write
property is the .NET representation of the parameter type. The valid values for this property
are listed in the .NET Framework documentation. This property is closely related to the Oracle-
DbType property, as you’ll see shortly. The default value of this property is DbType.String. Listing
2-13 illustrates setting this property to its default value.

Listing 2-13. Setting the DbType Property

OracleParameter p1 = new OracleParameter();

// sample DbType setting
p1.DbType = DbType.String;

The OracleDbType Property
The OracleDbType property is the Oracle Data Provider for .NET representation of the parame-
ter type. This read-write property is optional in the sense that if it is not specified, it is derived
automatically based on the DbType property. The default value for this property is Oracle-
DbType.Varchar2, which corresponds to the default value of DbType.String for the DbType
property. The DbType property and the OracleDbType property are linked in the sense that
changing one results in the other being derived to the correct type. This allows you to easily
exchange data between the .NET Framework and the Oracle Data Provider. The available
values for this parameter are extensive and are listed in the Oracle Data Provider for .NET doc-
umentation. Listing 2-14 illustrates how to set this property and how it is linked to the DbType
property.

CHAPTER 2 ■ RETRIEVING DATA 69

4258_Ch02_CMP1 9/16/04 4:15 PM Page 69

Listing 2-14. Setting the OracleDbType Property

OracleParameter p1 = new OracleParameter();

// set to nondefault value (date in this case)
// the default value is varchar2
p1.OracleDbType = OracleDbType.Date;

■NOTE This property isn’t supported in the current version of the Microsoft provider. The Microsoft
provider uses the DBType property in place of this Oracle-specific property.

The ParameterName Property
If the BindByName property of the OracleCommand object is false—the default—the Parameter-
Name property is optional, though you may specified it if you want to. The default value of the
ParameterName property is null. This is a read-write property and takes a String value. If the
BindByName property of the OracleCommand object is true, then the value of this property must
match the variable name used in the SQL statement in order for variable substitution to occur
correctly. This value is also required if you use index by name when you reference a member
in the Item method of the OracleParameterCollection class. The value for this property should
be less than 30 characters in length. In Listing 2-15, you’re setting the ParameterName property.

Listing 2-15. Setting the ParameterName Property

// create a parameter object
OracleParameter p1 = new OracleParameter();

// setting the ParameterName property
p1.ParameterName = "Parameter1";

The Precision Property
The precision of an Oracle numeric type indicates the maximum number of digits that may
be present in the number. This property is a read-write property that has a default value of 0.
The reason that the default value is 0 is that the default value of the OracleDbType property
is OracleDbType.Varchar2, which is a character data type. The precision property only has
meaning for the OracleDbType.Decimal data type, which is the Oracle Data Provider for .NET
representation of the internal database type of NUMBER. This property may hold any integer
value in the range of 0 to 38, which corresponds to the precision values for a column of type
NUMBER in the database. In Listing 2-16, you set the maximum number of digits allowed to 8.

Listing 2-16. Setting the Precision Property

// create the parameter
OracleParameter p1 = new OracleParameter();

CHAPTER 2 ■ RETRIEVING DATA70

4258_Ch02_CMP1 9/16/04 4:15 PM Page 70

// setting the OracleDbType to decimal
p1.OracleDbType = OracleDbType.Decimal;

// set the precision property
// this sets the total number of digits allowed to 8
p1.Precision = 8;

The Scale Property
Like the Precision property, the Scale property is only meaningful when you’re dealing with
the OracleDbType.Decimal data type. You use this property to specify how many decimal places
are used in the resolution of the value to which this property is applied. This read-write prop-
erty has a default value of 0 for the same reason the Precision property does. This property
may hold any integer value in the range of –84 to 127. It may seem bizarre that this property
can have a negative value. After all, how can you have a negative number of decimal places?
When this value is a negative integer, it’s telling Oracle to round the value to the specified num-
ber of digits to the left of the decimal point. For example, if this value is –3, Oracle rounds the
number to the nearest whole thousandth. Listing 2-17 illustrates how to set the Scale property.

Listing 2-17. Setting the Scale Property

// create a parameter
OracleParameter p1 = new OracleParameter();

// setting the OracleDbType to decimal
p1.OracleDbType = OracleDbType.Decimal;

// set the precision property
// this sets the total number of digits allowed to 8
p1.Precision = 8;

// set the scale property
// this sets the decimal places to 2
p1.Scale = 2;

The Size Property
In Listing 2-11, you created an OracleParameter object (p9) by specifying a size of 32 and a
value of “Parameter 9”. You may wonder why this is acceptable when clearly the value “Para-
meter 9” doesn’t have a size of 32. The Size property specifies the maximum size that the
Value property will be in either bytes or characters, as appropriate. This is a read-write integer
property and is also mutable. After a command associated with a parameter object executes,
this property holds the size of the data in the Value property. You may choose not to specify
this value. If you choose not to, if it can, the data provider derives the size of the data in the
Value property for you when the binding operation occurs. However, the data provider is not
aware of the size of data in the database, so you should set this property when you’re using out
parameters in a stored function or procedure. In addition, you don’t need to set this property
for fixed-size data such as a date data type. Listing 2-18 illustrates setting this property.

CHAPTER 2 ■ RETRIEVING DATA 71

4258_Ch02_CMP1 9/16/04 4:15 PM Page 71

Listing 2-18. Setting the Size Property

// create a parameter
OracleParameter p1 = new OracleParameter();

// setting the OracleDbType to Varchar2 which is a variable size type
p1.OracleDbType = OracleDbType.Varchar2;

// set the size property
p1.Size = 10;

The Status Property
The Status property is a bidirectional read-write property, which is of type OracleParameter-
Status. You can use this property to inform the data provider that you wish to create a null
in the database. I discuss this in Chapter 3. After executing a command, you can use this
property to determine if your operation succeeded or fetched a null from the database.
In Listing 2-19, you perform a hypothetical operation based upon the Status property.

Listing 2-19. Using the Status Property

// create a parameter
OracleParameter p1 = new OracleParameter();

// setting the OracleDbType to Varchar2
p1.OracleDbType = OracleDbType.Varchar2;

// perform an operation such as calling a stored function

// get the status
if (p1.Status == OracleParameterStatus.Success)
{
// perform some process

}

■NOTE This property isn’t supported in the current version of the Microsoft provider.

The Value Property
The Value property is a read-write property that is represented by the .NET object data type.
When you’re using parameters for input, this is the value substituted into your bind variable
placeholder at run time. When you’re using output parameters, this is how you retrieve the
data from the database into your application. And when you’re using input/output parame-
ters, this property serves both purposes. You may also use the Value property to specify a null
as an input parameter (see Chapter 3). Listing 2-20 illustrates using this property for an input
parameter.

CHAPTER 2 ■ RETRIEVING DATA72

4258_Ch02_CMP1 9/16/04 4:15 PM Page 72

Listing 2-20. Setting the Value Property

// create a parameter
OracleParameter p1 = new OracleParameter();

// setting the OracleDbType to Varchar2
p1.OracleDbType = OracleDbType.Varchar2;

// set the value
// this will be passed to the database
p1.Value = "Test Value";

The OracleDataReader Class
When it comes to working with forward-only, read-only result sets, the OracleDataReader class
is the class of choice. As opposed to the OracleDataAdapter class, which I discuss in the next
chapter, this class maintains a connection to the database. Unlike the other classes we’ve
examined, this class doesn’t provide a constructor. Instead, you obtain a reference to an
OracleDataReader by calling the ExecuteReader method on the OracleCommand object. The
OracleDataReader class provides eight properties:

Depth: Indicates the nesting level of a row.

FetchSize: Indicates the size of the data reader cache.

FieldCount: Indicates the number of fields (columns) in the result set.

IsClosed: Indicates if the data reader is closed.

Item: Is used to retrieve the value of a column.

InitialLOBFetchSize: Specifies how much of a LOB (or large object) column is initially
read by the data reader.

InitialLONGFetchSize: Specifies how much of a LONG column is initially read by the data
reader.

RecordsAffected: Indicates the number of rows affected by an operation.

■NOTE The FetchSize, InitialLOBFetchSize, and InitialLONGFetchSize properties aren’t sup-
ported in the current version of the Microsoft provider.

The Depth Property
This property is a read-only integer property that always returns a value of 0. I’ve included it
here for completeness; you won’t be using this property.

CHAPTER 2 ■ RETRIEVING DATA 73

4258_Ch02_CMP1 9/16/04 4:15 PM Page 73

The FetchSize Property
The initial value for this property is inherited from the OracleCommand object. The property
behaves in the same way as the FetchSize property of the OracleCommand object. Listing 2-21
illustrates retrieving the value of this property from an OracleDataReader object.

Listing 2-21. Retrieving the FetchSize Property from a Data Reader

// create a command object
OracleCommand c1 = new OracleCommand();

// set OracleCommand properties such as commandtext…

// get the data reader object
OracleDataReader dataReader = c1.ExecuteReader();

// get the fetch size
// this is inherited from the OracleCommand object
long fetchSize = dataReader.FetchSize;

■NOTE This property isn’t supported in the current version of the Microsoft provider.

The FieldCount Property
The FieldCount property is a read-only property that returns an integer. This property
represents the total number of columns in the result set associated with this instance of the
OracleDataReader class. In Listing 2-22, you get the number of fields that are in the result set,
which is represented by the data reader object.

Listing 2-22. Retrieving the FieldCount Property Value

// create a command object
OracleCommand c1 = new OracleCommand();

// set OracleCommand properties…

// get a data reader
OracleDataReader dataReader = c1.ExecuteReader();

// get the number of fields in the result set
int fieldCount = dataReader.FieldCount();

The IsClosed Property
The IsClosed property is a read-only Boolean property and has a default value of true. This
property, along with the RecordsAffected property, is available when the data reader object is

CHAPTER 2 ■ RETRIEVING DATA74

4258_Ch02_CMP1 9/16/04 4:15 PM Page 74

either in a closed or an open state. Listing 2-23 illustrates how to perform conditional process-
ing based on the value of this property.

Listing 2-23. Using the IsClosed Property

// create a command object
OracleCommand c1 = new OracleCommand();

// set OracleCommand properties…

// get a data reader
OracleDataReader dataReader = c1.ExecuteReader();

// if the dataReader is not closed...
if (!dataReader.IsClosed)
{
// perform some process such as reading the data and displaying it

}

The Item Property
The Item property is a read-only property that returns the value of a column either by column
index or column name. The object returned by the Item property is returned as a .NET Frame-
work object rather than an Oracle Data Provider type. When you’re using the column name
as an indexer, the data provider attempts to perform a case-sensitive search for the supplied
column name. If the case-sensitive search fails, the provider then attempts a case-insensitive
search. This property is accessed via the “indexer” mechanism. Listing 2-24 illustrates how
to access this property in a similar manner to that presented in the Get Employees sample.

Listing 2-24. Accessing the Item Property

// create a command object
OracleCommand c1 = new OracleCommand();

// set OracleCommand properties…

// get a data reader
OracleDataReader dataReader = c1.ExecuteReader();

string ename = dataReader[0].ToString();

The InitialLOBFetchSize Property
Like the FetchSize property, the initial value for this property is inherited from the Oracle-
Command object. This property specifies, in bytes or characters as appropriate, the amount of
data initially fetched for a large object column. The maximum legal value for this property
is 32K or 32,767 bytes or characters. You’ll use this property in Chapter 6 when you explore
Oracle’s support for large objects.

CHAPTER 2 ■ RETRIEVING DATA 75

4258_Ch02_CMP1 9/16/04 4:15 PM Page 75

■NOTE This property isn’t supported in the current version of the Microsoft provider.

The InitialLONGFetchSize Property
The use of the LONG column data type is deprecated in favor of the more flexible large object
(LOB) column types. Because the LONG column type has been deprecated, you won’t utilize this
property in this book.

■NOTE This property isn’t supported in the current version of the Microsoft provider.

The RecordsAffected Property
This property, along with the IsClosed property, is available when the data reader object is in
either a closed or an open state. The RecordsAffected property is a read-only integer type that
always returns a value of –1 for SELECT statements like those you’ll be using in this chapter.

The OracleDataReader Methods
You can think of the methods of the OracleDataReader class as either operating on the class
object itself or on the data contained in the result set represented by the class object. That is,
some methods, such as FetchSize, are related more to the data provider classes than to the
data in the result set. This method doesn’t change the data in a result set, for example. The
methods that operate on the data typical begin with a prefix of Get, and as a result, I refer to
these methods as the Get methods. Within the grouping of the Get methods, methods return
data as an Oracle type or as a .NET Framework type. The GetOracle methods return data as an
Oracle type, whereas the Get methods return data as a .NET Framework type. For example,
the GetOracleDate method returns an OracleDate object. On the other hand, the GetDateTime
method returns a .NET Framework DateTime value.

■NOTE The methods of the OracleDataReader class generally correspond to the Oracle column type.
For a complete mapping of the Oracle database, the .NET Data Provider, and the .NET Framework type
mappings, please consult the Oracle Data Provider for .NET documentation.

CHAPTER 2 ■ RETRIEVING DATA76

4258_Ch02_CMP1 9/16/04 4:15 PM Page 76

Implementing Data Retrieval Techniques
In this section, you’ll pull together all the concepts, properties, methods, classes, and so on,
that we’ve been discussing. The samples here go into greater depth and illustrate more fea-
tures than the Get Employees sample you developed at the beginning of the chapter.

Using the TableDirect Method
Let’s start with a simple example: a Windows Forms–based project that returns all the data
from a specified table (the JOBS table in the HR schema), by setting of the CommandType prop-
erty of the OracleCommand object to a value of TableDirect.

You’ll find the TableDirect method useful when you wish to simply display the data in a
table. Using this method is essentially the same as issuing a select * from <table> SQL state-
ment against the database. You don’t have control over the order of the data as it is returned
from the database using this method.

■NOTE The TableDirect method isn’t supported in the current version of the Microsoft provider.

In this project, you use a list box control to display, in a read-only fashion, the complete
data in the JOBS table. The OracleConnection object is created as a form-level variable and ini-
tialized in the form load event as with the first sample. In this sample, I illustrate the
TableDirect method of retrieving data from the database.

In this sample, I use a non-data-bound control. In the next chapter, I investigate using a
data-bound control and the OracleDataAdapter class. The form that I use in this sample is
illustrated in Figure 2-8. This sample is the TableDirect sample in the code download.

Figure 2-8. The TableDirect sample form

CHAPTER 2 ■ RETRIEVING DATA 77

4258_Ch02_CMP1 9/16/04 4:15 PM Page 77

The structure of the JOBS table is illustrated in Listing 2-25.

Listing 2-25. The JOBS Table Structure

C:\>sqlplus hr@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Wed May 12 11:29:52 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> desc jobs
Name Null? Type
--- -------- ------------
JOB_ID NOT NULL VARCHAR2(10)
JOB_TITLE NOT NULL VARCHAR2(35)
MIN_SALARY NUMBER(6)
MAX_SALARY NUMBER(6)

SQL>

■NOTE The default password for the HR schema is hr and the account is initially locked. I have unlocked
the account and changed the password to demo as shown in the Appendix.

This sample uses the same mechanism to connect to the database as the first sample in
this section, and it has a single point of interaction with the database. That single point of
interaction occurs within the code for the Retrieve button.

The Connect Button Code
The code for the Connect button in this sample uses a variable of type string to assign the
connection string value to the ConnectionString property of the OracleConnection rather than
pass it to the connection object constructor. Listing 2-26 contains this code.

Listing 2-26. The Connect Button Code

private void btnConnect_Click(object sender, System.EventArgs e)
{
// create a basic connection string using the sample
// Oracle HR user the default password of hr has been changed

CHAPTER 2 ■ RETRIEVING DATA78

4258_Ch02_CMP1 9/16/04 4:15 PM Page 78

// to demo on my system
string connString = "User Id=hr; Password=demo; Data Source=oranet";

// only connect if we are not yet connected
if (oraConn.State != ConnectionState.Open)
{
try
{
oraConn.ConnectionString = connString;

oraConn.Open();

MessageBox.Show(oraConn.ConnectionString, "Successful Connection");
}
catch (Exception ex)
{
MessageBox.Show(ex.Message,"Exception Caught");

}
}

}

The Retrieve Button Code
All of the meaningful interaction with the database happens in the code for the Retrieve but-
ton. Because you are using the TableDirect method to retrieve data from the database, your
interaction with the database is fairly brief and simple in nature. The code to retrieve the data
in this fashion is contained in Listing 2-27.

Listing 2-27. The Retrieve Button Code

private void btnRetrieve_Click(object sender, System.EventArgs e)
{
// create an OracleCommand object
// we will use the TableDirect method
// and the JOBS table
OracleCommand cmdEmployees = new OracleCommand();
cmdEmployees.Connection = oraConn;
cmdEmployees.CommandType = CommandType.TableDirect;
cmdEmployees.CommandText = "JOBS";

// build a string that will make the header row
// in the list box
string headText = "Job".PadRight(12);
headText += "Title".PadRight(37);
headText += "Min Salary".PadRight(12);
headText += "Max Salary".PadRight(12);

// build a string that will separate the heading

CHAPTER 2 ■ RETRIEVING DATA 79

4258_Ch02_CMP1 9/16/04 4:15 PM Page 79

// row from the data
string headSep = "========== ";
headSep += "=================================== ";
headSep += "========== ";
headSep += "========== ";

if (oraConn.State == ConnectionState.Open)
{
try
{
// get a data reader
OracleDataReader dataReader = cmdEmployees.ExecuteReader();

// add the heading and separator
// listJobs is the list box on the form
listJobs.Items.Add(headText);
listJobs.Items.Add(headSep);

// this string will represent our lines of data
string textLine = "";

// loop through the data reader
// build a "line" of data
// and add it to the list box
while (dataReader.Read())
{
textLine = dataReader.GetString(0).PadRight(12);
textLine += dataReader.GetString(1).PadRight(37);
textLine += dataReader.GetDecimal(2).ToString().PadRight(12);
textLine += dataReader.GetDecimal(3).ToString().PadRight(12);

listJobs.Items.Add(textLine);
}

}
catch (Exception ex)
{
MessageBox.Show(ex.Message,"Exception Caught");

}
}

cmdEmployees.Dispose();
}

Your code here begins with the standard instantiation of your OracleCommand object and
the setting of the basic properties. You set the CommandType property to CommandType.Table-
Direct in order to enable the correct interpretation of the CommandText property. If you left
the CommandType to default to CommandType.Text, you’d receive an error when you invoked the

CHAPTER 2 ■ RETRIEVING DATA80

4258_Ch02_CMP1 9/16/04 4:15 PM Page 80

ExecuteReader method. The CommandText property is simply assigned the name of the table
you wish to use.

In order to provide a minimal header and a separator to give meaning to the data that
you’ll display in the list box, you create two string objects. Although you’re hard-coding the
values here, you’ll work with a dynamic method to accomplish this later in the chapter.

You perform a simple check to verify that the database connection is in an open state by
including the code to retrieve the data inside of a simple if construct. Your next step is to get
a data reader from your command object. Once you have the data reader object, simply loop
through the data and build a line of text to add to the list box. Figure 2-9 illustrates the form at
run time.

Figure 2-9. The TableDirect form at run time

Controlling the Number of Rows Returned
In this example, you build a console-based project that you can use to study the effect of alter-
ing the number of rows fetched during each round-trip to the database server. You do this by
accessing the RowSize property and using simple multiplication to set the number of rows to
be fetched. You use the sh user and the SALES table for this sample. As with the hr user, I’ve
changed the password to demo and unlocked the account during the software installation.
The SALES table is a larger table with around 1,000,000 records. The exact number of records
in this table depends on the version of Oracle you’re using. For example, in version 9i, there
are 1,016,271 rows in the table, whereas in the 10g release, there are 918,843 rows on my sys-
tem. Although it is possible to use the TableDirect method in this sample, you’ll use a simple
SQL statement instead. This makes the code more portable among the data providers and
allows you a finer degree of control over the SQL statement you submit to the database.

The code for this sample includes a Main method and a single helper method. The helper
method performs all the necessary work; it retrieves all the rows from the SALES table using
different values for the FetchSize parameter. The sample code calls the helper function six
times, passing a different value for the number of rows to fetch on each call. You bracket the
fetch operation by a simple timing construct so you can determine the amount of time spent
during this operation. You can download this sample (the FetchSize project) from this chap-
ter’s folder in the Downloads section of the Apress website (www.apress.com).

CHAPTER 2 ■ RETRIEVING DATA 81

4258_Ch02_CMP1 9/16/04 4:15 PM Page 81

The Main Method Code
As with the other samples, the code in your Main method for this sample is responsible for
creating a connection to the database. Once you’ve established the connection, this method
simply calls your test method, passing a reference to the database connection and a value that
determines the number of rows to fetch. The code for the Main method is detailed in Listing 2-28.

Listing 2-28. The Main Method Code

static void Main(string[] args)
{
// instantiate the class to call private helper method
// Class1 is the default class created by Visual Studio
Class1 theClass = new Class1();

OracleConnection oraConn = new OracleConnection();
// the password has been changed from the default of hr to demo and the
// account has been unlocked on my system
oraConn.ConnectionString = "User Id=sh; Password=demo; Data Source=oranet";

try
{
oraConn.Open();

// fetch 10 rows per server trip
theClass.doFetchTest(oraConn,10);

// fetch 100 rows per server trip
theClass.doFetchTest(oraConn,100);

// fetch 1,000 rows per server trip
theClass.doFetchTest(oraConn,1000);

// fetch 10,000 rows per server trip
theClass.doFetchTest(oraConn,10000);

// fetch 100,000 rows per server trip
theClass.doFetchTest(oraConn,100000);

// fetch 1 row per server trip
theClass.doFetchTest(oraConn, 1);

}
catch (Exception ex)
{
Console.WriteLine("Exception caught: {0}", ex.Message);

}

if (oraConn.State == ConnectionState.Open)
{

CHAPTER 2 ■ RETRIEVING DATA82

4258_Ch02_CMP1 9/16/04 4:15 PM Page 82

oraConn.Close();
}
oraConn.Dispose();

}

This code is straightforward in nature and creates the database connection, calls the test
method, closes the database connection, and disposes of the database connection object. If
an exception is thrown, a simple message appears in the console window. As I mentioned ear-
lier, the test method performs the bulk of the work. In Chapter 10, you’ll examine a method
of creating trace files with timing information in them that allows you to see exactly where
Oracle is spending its processing time.

The Test Method Code
Once the Main method has successfully created a connection to the database, this method is
called in succession for a total of six executions. This method creates an OracleDataReader and
an OracleCommand object and sets the properties as required. Once the code has retrieved a
data reader from the command object, you’re able to determine the value of the RowSize prop-
erty. Your code then simply sets the number of rows to be fetched for each trip to the database
by taking the product of the RowSize and the value of the numRows parameter. Although the
data reader object inherits the value for the FetchSize property from the command object,
you override it with the result of your number of rows calculation.

The code then reads all the data from the database server into the internal cache that the
FetchSize property sized. You’re using a no-op loop because you aren’t particularly interested
in the data itself in this sample. The total time it takes to perform the operation is calculated
and informational text is written to the console window. You calculate the total time by getting
the current date and time using the Now property of the DateTime object, performing the fetch
operation (which is the operation to be timed), getting the current time again, and calculating
the difference between the two times. You can then use the Console.WriteLine method to dis-
play the elapsed time for each test of the fetch operation. Listing 2-29 contains the code for
the test method.

Listing 2-29. The Test Method Code

private void doFetchTest(OracleConnection con, long numRows)
{
// create our command and reader objects to be
// used in the test
OracleCommand cmdFetchTest = new OracleCommand();
OracleDataReader dataReader = null;

// this will hold the time taken and the "i"
// will simply be incremented as we read through
// the result set
DateTime dtStart;
DateTime dtEnd;
double totalSeconds = 0;
long i = 0;

CHAPTER 2 ■ RETRIEVING DATA 83

4258_Ch02_CMP1 9/16/04 4:15 PM Page 83

// Set the command object properties
// the sales table is a "larger" table so we
// will use it to test the fetch size impact
// if using the Oracle Data Provider, this could well
// be a TableDirect operation
cmdFetchTest.Connection = con;
cmdFetchTest.CommandText = "select * from sales";

// ensure we have an open connection
if (con.State == ConnectionState.Open)
{
dtStart = DateTime.Now;

dataReader = cmdFetchTest.ExecuteReader();

// once we have the data reader we can get the
// row size from the command object
// set the fetch size to the number of rows passed
// as a parameter
dataReader.FetchSize = cmdFetchTest.RowSize * numRows;

// ensure we actually fetch from the result set
// even though this is a sort of "no-op" loop
while (dataReader.Read())
{
i++;

}

dtEnd = DateTime.Now;

// calculate the total time it takes to fetch
totalSeconds = dtEnd.Subtract(dtStart).TotalSeconds;

dataReader.Close();

// display some info about the time it takes to perform
// the operation
Console.WriteLine("Number of rows per fetch: {0}", numRows.ToString());
Console.WriteLine(" Fetch time: {0} seconds.", totalSeconds.ToString());
Console.WriteLine();

// explicitly dispose...
dataReader.Dispose();
cmdFetchTest.Dispose();

}
}

CHAPTER 2 ■ RETRIEVING DATA84

4258_Ch02_CMP1 9/16/04 4:15 PM Page 84

Running the FetchSize Sample
Because this sample is noninteractive, simply run the binary from a command-line prompt.
Running the application from within the Visual Studio debugger is problematic because the
console window is closed at the end of the application execution, and therefore, it’s difficult
to view its results. Listing 2-30 illustrates the application running and its output. Obviously,
you’ll see different numbers than those presented here when you run it on your own setup.

Listing 2-30. The Fetch Time Results for Different Batch Sizes

C:\My Projects\ProOraNet\Oracle\C#\Chapter02\FetchSize\bin\Debug>
FetchSize.exe
Number of rows per fetch: 10
Fetch time: 17.7054592 seconds.

Number of rows per fetch: 100
Fetch time: 9.1431472 seconds.

Number of rows per fetch: 1000
Fetch time: 8.1316928 seconds.

Number of rows per fetch: 10000
Fetch time: 8.061592 seconds.

Number of rows per fetch: 100000
Fetch time: 8.1016496 seconds.

Number of rows per fetch: 1
Fetch time: 70.9920816 seconds.

C:\My Projects\ProOraNet\Oracle\C#\Chapter02\FetchSize\bin\Debug>

As you can see in the output of the application, when you use a fetch size greater than 100
rows, not much performance benefit is gained in terms of time. It is interesting to note that if
you use a fetch size of 1 to save resources, the fetch time dramatically increases. In addition,
the amount of memory you use isn’t indicated by the output of the application itself. However,
you can use the Windows Task Manager to monitor how much memory the application uses
while it’s executing to get a rough idea of how much memory the application is using. Table 2-1
summarizes the results, including memory usage. Again, your experiences will be different
than mine, but the sample application should, in general, exhibit the same behavior.

■NOTE Don’t infer that 100 is the ideal number of rows to be fetched for every result set. Each result set
behaves differently depending on row size, among other factors.

CHAPTER 2 ■ RETRIEVING DATA 85

4258_Ch02_CMP1 9/16/04 4:15 PM Page 85

Table 2-1. Fetch Size and Time vs. Memory Usage

Number of Rows Time Spent Fetching Memory Usage

10 17.71 secs 16,856K

100 9.14 secs 16,972K

1,000 8.13 secs 17,216K

10,000 8.06 secs 19,560K

100,000 8.10 secs 42,816K

1 70.99 secs 17,020K

As Table 2-1 illustrates, although the time to fetch is somewhat constant, the return in
terms of memory consumption diminishes as the number of rows to fetch increases. Because
this data represents a single user on a laptop, an application with hundreds (or more) of users
on a server consumes much more memory because each and every connection uses that
amount of memory. Having a system that has 1,000 clients with each asking for 42MB of
server memory is probably not a good idea on many systems. As with many software con-
struction decisions, you must determine a balance based on the context in which the activity
takes place.

Bind Variables and the OracleParameter Class
You need to be aware of several major paradigms when you’re working with the Oracle data-
base; one of those is that the Oracle software is written with the expectation that you’ll use
bind variables in your code

.This issue is so significant with regards to the performance and scalability of your .NET
Oracle code, that it’s worth taking a little time to explore what bind variables are and why it’s
imperative that, by default, you use them in your .NET code.

Oracle Architecture: The Shared Pool
In Chapter 1, I briefly discussed the Oracle instance and indicated that certain memory struc-
tures reside inside of the instance. One of those memory structures is an important component
referred to as the Shared Pool.

Multiple components are contained in the Shared Pool. One of the components is the
Library Cache. Like the Shared Pool, the Library Cache contains multiple structures. The struc-
ture that you’re most concerned with is known as the Shared SQL Area. As its name implies,
the Shared SQL Area is a shared resource inside of the instance. It’s an important structure
because it allows Oracle to save memory and processing time.

The purpose of the Shared SQL Area is simple: it allows Oracle to reuse existing information.
By being able to reuse existing information, Oracle doesn’t have to re-create things such as exe-
cution plans and parse trees for every SQL statement presented to it. These are time-consuming
operations, and any time you can eliminate or avoid them results in better execution times. In a
multiuser application, it’s likely that more than one user will want to execute the same SQL
statement. If the SQL statement in question can be found in the Shared SQL Area, Oracle can

CHAPTER 2 ■ RETRIEVING DATA86

4258_Ch02_CMP1 9/16/04 4:15 PM Page 86

efficiently use that copy of the SQL statement. If the SQL statement in question can’t be located
in the Shared SQL Area, Oracle must go through the process of parsing and generating an execu-
tion plan for that statement before placing it in the Shared SQL Area for potential reuse. This is
where using bind variables becomes significant.

Using Bind Variables
As .NET developers, one of the simplest things we can do in our code to help enable Oracle to
efficiently use the Shared SQL Area is to use bind variables. When you use bind variables, a SQL
statement is presented to Oracle with certain pieces of information missing. In this situation, a
placeholder (the bind variable) is used in place of an actual data value. When the Oracle server
actually executes the SQL statement, the value of the bind variable is substituted into the place-
holder location. The following simple code snippet illustrates what a SQL statement using a bind
variable looks like compared to one that does not. In the snippet, the identifier :p_empno is a
bind variable.

-- SQL with a literal
select ename from emp where empno = 7788;

-- The same SQL with a bind variable in place of the literal
select ename from emp where empno = :p_empno;

This is an incredibly simple thing to do, yet it can have a profound impact on the efficiency
and scalability of a particular database. The reason this can have such an impact is that the act
of using bind variables allows SQL statements to be much more readily shared among sessions.
When you use bind variables, as far as Oracle is concerned, the SQL statements not only look
the same, they are the same. When SQL statements are the same, Oracle has the ability to reuse
them as discussed in the previous section.

This brings up an interesting point: If Oracle can reuse SQL statements that look the
same, do you have to use bind variables when the values in a SQL statement never differ from
execution to execution? The short answer is “No.” If the values in a SQL statement absolutely
remain identical from execution to execution, then using bind variables may not be necessary.
It is when the Shared Pool becomes flooded with similar, but not identical, SQL statements
that bind variables pay dividends. Of course, if you design an application without using bind
variables because you expect SQL statements to be identical and then you find out that this
assessment isn’t true, you might want to redesign. It’s much easier to employ bind variables
from the beginning rather than retrofitting a deployed application.

You should be familiar with an important aspect of using bind variables. They may appear
anywhere a text literal may appear in a SQL statement. A side effect of this is that you may not
use bind variables for items such as table or column names. An easy way to think of this is to
think of bind variables as placeholders for user input. Bind variables aren’t limited to .NET
code—you may also use them with stored procedures and functions on the server (see Chap-
ter 5). I illustrate the proper use of bind variables in .NET code in this section.

CHAPTER 2 ■ RETRIEVING DATA 87

4258_Ch02_CMP1 9/16/04 4:15 PM Page 87

The Traditional Approach
In many applications, a technique may be employed that appears to use bind variables, but
in fact, it does not. This technique is the concatenation of values into a SQL statement at run
time. The following pseudo code snippet shows an example of what code like this looks like:

for (int i = 0; i < 11; i++)
{
sqlStatement = "select ename ";
sqlStatement += "from emp ";
sqlStatement += "where enum = " + i.toString();

<submit and process statement>
}

The problem with this approach, of course, is that although the value of i isn’t directly
hard-coded into the SQL statement, the binding is all done before the statement is submitted
to Oracle. As a result, Oracle sees only the completed statement. In this scenario, each com-
pleted statement looks different to Oracle because the value in the where clause changes as
the code iterates through the loop.

The correct approach is to use the OracleParameter class with bind variables so that the
binding occurs on the database side during statement processing.

Transaction Processing vs. Data Warehouse
It used to be that databases could traditionally be classified into two categories:

• Online Transaction Processing (OLTP)

• Data Warehouse (DW) or Decision Support Systems (DSS)

Because systems are growing and becoming more complex and consolidated, many systems
are now mixed workload systems. However, it’s still possible to classify databases as generally
DW/DSS or OLTP in nature, though the line is often blurred. For the databases that are truly
in the middle, you need to apply the appropriate coding techniques to the process at hand.

In general, an OLTP system is characterized by many short-duration transactions,
whereas a DW or DSS system is characterized by a long runtime and fewer transactions. In
OLTP systems, the chief concern may be stated as the maximum number of transactions
per unit of time. In contrast, the chief concern of a DW system may be the maximum data
throughput per unit of time. Transactions of less than a second would be commonplace in an
OLTP system. On the other end of the spectrum, DW transactions often last minutes or hours.

Because the primary characteristics and chief concerns of these two types of systems are
somewhat disparate, the subject of bind variables can often be confusing. If the system with
which you are working is clearly an OLTP system, bind variables are a necessity. However, if
the system is more of a pure DW system, using bind variables can actually hinder perform-
ance. This seems strange, but when you consider that the use of bind variables is all about
shaving a percentage of time off an operation and resource preservation, it can make a little
more sense.

CHAPTER 2 ■ RETRIEVING DATA88

4258_Ch02_CMP1 9/16/04 4:15 PM Page 88

In an OLTP environment, being able to reuse SQL statements can shave a significant per-
centage of time. For example, if a statement takes .05 seconds to process, saving only .01 of a
second represents a 20-percent saving in units of time. In a DW environment, in contrast, if a
statement takes 90 minutes to run, saving .01 of a second doesn’t amount to a great advantage.

This is one of those areas where knowledge sharing between the development team and
the database administration team is invaluable. By correctly analyzing and designing the sys-
tem as a whole, you can make the right choices from the beginning.

The OracleParameter Project
In this project, you work with the basic concepts that you explored earlier in the chapter.
Specifically, you look at using bind variables via the OracleParameter class and using the
OracleDbType to inform the data provider directly of what type of parameters you’re using.
Using the OracleDbType is not strictly necessary because the data provider can derive the type
from the actual parameter value. However, explicitly specifying the parameter type eliminates
any possible confusion as to the parameter type. This project is implemented as a simple Win-
dows form. The completed form in the design environment is depicted in Figure 2-10.

Figure 2-10. The OracleParameter sample form

For this sample, you use the hr user, which is an Oracle-supplied sample user. This user is
created and the schema populated by following the installation process in the Appendix. If you
need to create this user, consult the Oracle documentation or your database administrator.

You’ll use the EMPLOYEES table to retrieve and display basic information based on the
EMPLOYEE_ID, the FIRST_NAME, and the LAST_NAME columns. Listing 2-31 provides the structure
of the EMPLOYEES table.

Listing 2-31. The EMPLOYEES Table Structure

C:\>sqlplus hr@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Tue May 11 10:54:50 2004

CHAPTER 2 ■ RETRIEVING DATA 89

4258_Ch02_CMP1 9/16/04 4:15 PM Page 89

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> desc employees
Name Null? Type
--- -------- -------------
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE
JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
MANAGER_ID NUMBER(6)
DEPARTMENT_ID NUMBER(4)

SQL>

This sample provides five points of interaction with the database:

The Connect button: Connects to the database using the technique of creating a string
variable and assigning the variable to the ConnectionString property.

The Get IDs button: Issues a SELECT statement against the database to retrieve the data.

The Lookup 1 button: Issues a SELECT statement against the database using the bind by
position method.

The Lookup 2 button: Issues a SELECT statement against the database using the bind by
name method.

The No Binds button: Issues a SELECT statement against the database using no bind variables.

There is a form-level variable of type OracleConnection. The variable is declared as follows:

private OracleConnection oraConn;

It is initialized in the form load event as follows:

oraConn = new OracleConnection();

All other variables are declared inside of their respective procedures. The five points of inter-
action with the database are represented by the button controls on the form. The Reset button
simply clears the Label controls and deselects any value in the Employee ID drop-down list

CHAPTER 2 ■ RETRIEVING DATA90

4258_Ch02_CMP1 9/16/04 4:15 PM Page 90

control. Now, you’ll examine the functionality each button provides and then run the sample.
After running the sample, you’ll examine the results in SQL*Plus.

The Connect Button

Not surprisingly, this button creates your connection to the database. Listing 2-32 contains
the code that accomplishes this task.

Listing 2-32. The Connect Button Code

private void btnConnect_Click(object sender, System.EventArgs e)
{
// create a basic connection string using the sample
// Oracle HR user
// the password has been changed from hr to demo and the account unlocked
string connString = "User Id=hr; Password=demo; Data Source=oranet";

// only connect if we are not yet connected
if (oraConn.State != ConnectionState.Open)
{
try
{
oraConn.ConnectionString = connString;

oraConn.Open();

MessageBox.Show(oraConn.ConnectionString, "Successful Connection");
}
catch (Exception ex)
{
MessageBox.Show(ex.Message,"Exception Caught");

}
}

}

There is nothing extravagant about this code. It simply creates a connection to the data-
base using default attribute values and your standard TNS alias. After you’ve established a
connection, a message box displays the connection string for your connection. In the event
that an exception is thrown, you simply catch it and display a MessageBox indicating what
exception occurred.

The Get IDs Button

Your first substantive activity with the database in your sample occurs within the code for the
Get IDs button. The code behind this button creates an OracleCommand object and an Oracle-
DataReader object. You then use these two objects to retrieve the employee_id for each row in
the EMPLOYEES table. Rather than working with the Employee ID drop-down list control as a
data-bound control, you simply load it with the values from the database. The code for the Get
IDs button is listed in Listing 2-33.

CHAPTER 2 ■ RETRIEVING DATA 91

4258_Ch02_CMP1 9/16/04 4:15 PM Page 91

Listing 2-33. The Get IDs Button Code

private void btnGetIDs_Click(object sender, System.EventArgs e)
{
// get the employee ids from the database
// we are not using the drop-down list control
// as a databound control
OracleCommand cmdEmpId = new OracleCommand();
cmdEmpId.CommandText = "select employee_id from employees order by employee_id";
cmdEmpId.Connection = oraConn;

try
{
// get a data reader
OracleDataReader dataReader = cmdEmpId.ExecuteReader();

// simply iterate the result set and add
// the values to the drop-down list
while (dataReader.Read())
{
// cbEmpIds is the Employee ID combo box on the form
cbEmpIds.Items.Add(dataReader.GetOracleDecimal(0));

}

dataReader.Dispose();
}
catch (Exception ex)
{
MessageBox.Show(ex.Message,"Exception Caught");

}
finally
{
cmdEmpId.Dispose();

}
}

In this code, you instantiate an OracleCommand object and set the CommandText property to
a simple SQL statement that retrieves all the employee_id values from the database. You then
loop through the values and add them to the Items collection of the drop-down list control.
Since you haven’t set any properties other than the Connection and the CommandText, you’re
using the default values as described earlier in the chapter.

The Lookup 1 Button

Once the Employee ID drop-down list control has been populated with the values from the
database, you can retrieve some additional information about each employee. In the code
for the Lookup 1 button, you retrieve the first_name and last_name from the EMPLOYEES
table using the employee_id. However, you pass the value to the database as a bind variable.
Listing 2-34 contains the code for this button.

CHAPTER 2 ■ RETRIEVING DATA92

4258_Ch02_CMP1 9/16/04 4:15 PM Page 92

Listing 2-34. The Lookup 1 Button Code

private void btnLookup1_Click(object sender, System.EventArgs e)
{
// get the selected item in the Employee ID
// drop-down list
// cbEmpIds is the combo box on the form
object selectedItem = cbEmpIds.SelectedItem;

if (selectedItem != null)
{
// get the employee name based on the employee id
// we will pass the employee id as a bind variable
OracleCommand cmdEmpName = new OracleCommand();

// the :p_id is our bind variable placeholder
cmdEmpName.CommandText = "select first_name, last_name from employees where
employee_id = :p_id";

// set the connection property
cmdEmpName.Connection = oraConn;

// create a new parameter object
// we will use this to pass the value of the
// employee_id to the database
OracleParameter p_id = new OracleParameter();

// here we are setting the OracleDbType
// we could set this as DbType as well and
// the Oracle provider will infer the correct
// OracleDbType
// by setting the type, we can avoid any confusion
// regarding the parameter type
p_id.OracleDbType = OracleDbType.Decimal;
p_id.Value = Convert.ToDecimal(selectedItem.ToString());

// add our parameter to the parameter collection
// for the command object
cmdEmpName.Parameters.Add(p_id);

// get our data reader
OracleDataReader dataReader = cmdEmpName.ExecuteReader();

// get the results - our query will only return 1 row
// since we are using the primary key
if (dataReader.Read())
{
// lblFirstName and lblLastName are labels on the form

CHAPTER 2 ■ RETRIEVING DATA 93

4258_Ch02_CMP1 9/16/04 4:15 PM Page 93

lblFirstName.Text = dataReader.GetString(0);
lblLastName.Text = dataReader.GetString(1);

}

dataReader.Close();

p_id.Dispose();
dataReader.Dispose();
cmdEmpName.Dispose();

}
}

Your code begins by verifying that you have a selected item in the drop-down list control
and instantiating an OracleCommand object. You then set the CommandText and Connection prop-
erties. Your CommandText includes a bind variable placeholder indicated by the : preceding the
p_id variable. This is where the parameter value is substituted into the SQL statement. The
SQL statement simply selects the first_name and last_name values for a given employee_id.
Because the employee_id is the primary key for the EMPLOYEES table, you won’t retrieve more
than one row from the database using this query.

After creating a command object, you instantiate an OracleParameter object named p_id.
You aren’t required to name the variable the same as the placeholder in the SQL statement.
However, if you use the same name, it can serve to identify the relationship readily when you
visually inspect the code. As illustrated in Listing 2-32, the employee_id column has the NUMBER
data type. Therefore, you set the OracleDbType property to OracleDbType.Decimal. You assign
the employee_id selected in the drop-down list control to the parameter Value property. Once
you’ve set all the properties on the OracleParameter object, add the parameter to the parame-
ter collection of the command object. At this point, you simply get an OracleDataReader from
the command object and assign the values retrieved from the database to the label controls
on the form.

The Lookup 2 Button

The code for the Lookup 2 button is similar to that of the Lookup 1 button. The primary differ-
ences in this code is that you’re passing two bind variables rather than a single variable, and
you’re using the BindByName mechanism rather than binding by position, which is the default.
Listing 2-35 contains the code you use to perform this functionality.

Listing 2-35. The Lookup 2 Button Code

private void btnLookup2_Click(object sender, System.EventArgs e)
{
// get the employee email and phone based on the
// first name and last name
// there are no duplicate first name / last name
// combinations in the table
// we will pass the first name and last name as
// bind variables using BindByName
OracleCommand cmdEmpInfo = new OracleCommand();

CHAPTER 2 ■ RETRIEVING DATA94

4258_Ch02_CMP1 9/16/04 4:15 PM Page 94

// the :p_last and :p_first are our bind variable placeholders
cmdEmpInfo.CommandText = "select email, phone_number from employees
where first_name = :p_first and last_name = :p_last";

cmdEmpInfo.Connection = oraConn;

// we will use bind by name here
cmdEmpInfo.BindByName = true;

OracleParameter p1 = new OracleParameter();
OracleParameter p2 = new OracleParameter();

// the ParameterName value is what is used when
// binding by name, not the name of the variable
// in the code
// notice the ":" is not included as part of the
// parameter name
p1.ParameterName = "p_first";
p2.ParameterName = "p_last";

// lblFirstName and lblLastName are labels on the form
p1.Value = lblFirstName.Text;
p2.Value = lblLastName.Text;

// add our parameters to the parameter collection
// for the command object
// we will add them in "reverse" order since we are
// binding by name and not position
cmdEmpInfo.Parameters.Add(p2);
cmdEmpInfo.Parameters.Add(p1);

// get our data reader
OracleDataReader dataReader = cmdEmpInfo.ExecuteReader();

// get the results - our query will only return 1 row
// since we are using known unique values for the first
// and last names
if (dataReader.Read())
{
// lblEmailText and lblPhoneText are label on the form
lblEmailText.Text = dataReader.GetString(0);
lblPhoneText.Text = dataReader.GetString(1);

}

dataReader.Close();

p1.Dispose();

CHAPTER 2 ■ RETRIEVING DATA 95

4258_Ch02_CMP1 9/16/04 4:15 PM Page 95

p2.Dispose();
dataReader.Dispose();
cmdEmpInfo.Dispose();

}

This code uses the same basic process as the code for the Lookup 1 button. Rather than
using the employee_id as you did in the code for the Lookup 1 button, you use the values from
the first_name and last_name labels to identify your employee in the table. This is a safe oper-
ation for the data supplied in the table because no duplicate values are in the table. Because
you’re using two bind variables, you’re able to use the BindByName property. You’re able to use
BindByName with a single variable; however, it doesn’t make much sense because only a single
position needs to be bound. The idea with BindByName is that the parameters don’t need to be
added to the collection in the same order because they are specified by the placeholders in the
SQL statement. With only a single value, it’s difficult not to get the order correct.

You’ve named your parameter values with more generic names in this sample as a way
to illustrate that they don’t need to be named the same as the placeholder values. In addition,
you’ve added the parameters to the parameter collection in an order different from that which
was used by the placeholders. This illustrates that the order is irrelevant when you use the
BindByName feature. As mentioned earlier in the chapter, this feature isn’t available with
the Microsoft provider.

The No Binds Button

In contrast to the code in the previous two sections, the code in this section doesn’t use bind
variables. This illustrates what was termed the traditional approach earlier. In addition, as
noted in Listing 2-36, this code carries out both of the functions performed by the Lookup 1
and Lookup 2 buttons.

Listing 2-36. The No Binds Button Code

private void btnNoBinds_Click(object sender, System.EventArgs e)
{
// this illustrates the "traditional" approach
// that does not use bind variables

// cbEmpIds is combo box on the form
object selectedItem = cbEmpIds.SelectedItem;

if (selectedItem != null)
{
OracleCommand cmdNoBinds = new OracleCommand();
cmdNoBinds.Connection = oraConn;
OracleDataReader dataReader;

cmdNoBinds.CommandText = "select first_name, last_name from employees
where employee_id = " + selectedItem.ToString();

// get our data reader

CHAPTER 2 ■ RETRIEVING DATA96

4258_Ch02_CMP1 9/16/04 4:15 PM Page 96

dataReader = cmdNoBinds.ExecuteReader();

// get the results - our query will only return 1 row
// since we are using the primary key
if (dataReader.Read())
{
// lblFirstName and lblLastName are labels on the form
lblFirstName.Text = dataReader.GetString(0);
lblLastName.Text = dataReader.GetString(1);

}

dataReader.Close();

// get the data that Lookup 2 performed above
// lblFirstName and lblLastName are labels on the form
cmdNoBinds.CommandText = "select email, phone_number from employees
where first_name = '" + lblFirstName.Text + "' and last_name = '" +
lblLastName.Text +"'";

// get our data reader
dataReader = cmdNoBinds.ExecuteReader();

// get the results - our query will only return 1 row
// since we are using known unique values for the first
// and last names
if (dataReader.Read())
{
// lblEmailText and lblPhoneText are labels on the form
lblEmailText.Text = dataReader.GetString(0);
lblPhoneText.Text = dataReader.GetString(1);

}

dataReader.Close();
dataReader.Dispose();
cmdNoBinds.Dispose();

}

In this code, you can clearly see that you aren’t using bind variables and are, instead, con-
catenating the values directly into the SQL statements. You’ll examine the effects this has after
you run the sample code a few times.

Running the OracleParameter Project

Now that you have a good idea of what the code in this sample project does, you’ll run it a few
times and look at the results in SQL*Plus. You can run it either from the debugging environ-
ment, from within Visual Studio, or simply by executing the binary directly. Figure 2-11
illustrates what the form looks like after you start the application.

CHAPTER 2 ■ RETRIEVING DATA 97

4258_Ch02_CMP1 9/16/04 4:15 PM Page 97

Figure 2-11. The OracleParameter form initial state

The following steps take you through a sample running of the application.

1. Click the Connect button to create the connection to your standard TNS alias as dis-
cussed in the code analysis. The results of this are illustrated in Figure 2-12.

Figure 2-12. The successful connection message

2. After you’ve successfully established the database connection, click the Get IDs button
to populate the Employee ID drop-down list. Figure 2-13 illustrates the results of this.

Figure 2-13. The populated Employee ID drop-down list

CHAPTER 2 ■ RETRIEVING DATA98

4258_Ch02_CMP1 9/16/04 4:15 PM Page 98

3. Select an Employee ID in the list and click the Lookup 1 button. Figure 2-14 illustrates
the results of doing this for employee #100.

Figure 2-14. The Lookup 1 results for employee #100

4. In order to retrieve the first and last names, click the Lookup 2 button. The results
should resemble those in Figure 2-15.

Figure 2-15. The Lookup 2 results for employee #100

5. In order to reset the form to a clean state, click the Reset button. This is illustrated by
Figure 2-16.

Figure 2-16. The results of the Reset button

CHAPTER 2 ■ RETRIEVING DATA 99

4258_Ch02_CMP1 9/16/04 4:15 PM Page 99

6. Select employee #100 in the Employee ID drop-down list and click the No Binds but-
ton to perform the operations with no bind variables. The results of this are illustrated
in Figure 2-17.

Figure 2-17. Executing the No Binds code

At this point, you should execute each of the operations just discussed a couple of times. I
also executed each operation for employees 101, 102, and 103 so that each operation executed
four times. After you have executed the operations a few times, close the form.

To see the difference between using bind variables and not using them, you’ll examine
the v$sql view in SQL*Plus. This view, like all views, is documented in the Oracle Database
Reference. Listing 2-37 illustrates this process and the results.

Listing 2-37. Examining the v$sql View After Executing Your Sample

C:\>sqlplus oranetadmin@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Mon May 10 22:18:23 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> col sql_text format a70 word_wrapped
SQL> select
2 sql_text,
3 executions
4 from
5 v$sql
6 where
7 sql_text like 'select first_name%'
8 or

CHAPTER 2 ■ RETRIEVING DATA100

4258_Ch02_CMP1 9/16/04 4:15 PM Page 100

9 sql_text like 'select email%'
10 order by
11 executions,
12 sql_text;

SQL_TEXT EXECUTIONS
-- ----------
select email , phone_number from employees where first_name = 1
'Alexander' and last_name = 'Hunold'

select email , phone_number from employees where first_name = 'Lex' 1
and last_name = 'De Haan'

select email , phone_number from employees where first_name = 1
'Neena' and last_name = 'Kochhar'

select email , phone_number from employees where first_name = 1
'Steven' and last_name = 'King'

select first_name , last_name from employees where employee_id = 100 1

select first_name , last_name from employees where employee_id = 101 1

select first_name , last_name from employees where employee_id = 102 1

select first_name , last_name from employees where employee_id = 103 1

select email , phone_number from employees where first_name = 4
:p_first and last_name = :p_last

select first_name , last_name from employees where employee_id = 4
:p_id

10 rows selected.

SQL>

After I connect via SQL*Plus as the administrative user, I issued the query in Listing 2-38
to observe the results of the sample code. As I expected, for the operations performed by the
No Binds button, each SQL statement appears with the literal text and has an EXECUTIONS
value of 1. This makes sense because Oracle can’t reuse the SQL statement—each statement
is distinct.

CHAPTER 2 ■ RETRIEVING DATA 101

4258_Ch02_CMP1 9/16/04 4:15 PM Page 101

On the other hand, you can clearly see that Oracle was able to reuse the statements that
I created with bind variables. Remember, each of my bind variable statements was executed
four times. By using bind variables, I allow Oracle to more efficiently process my statements.
In this simple example, I reduced the number of distinct SQL statements by using binds and
I also allowed Oracle to reuse the statements.

Using the DataReader Properties
This project is another console-based application that demonstrates how to use the
FieldCount property, the IsDBNull method, and the Item access method. The application that
you develop for your final sample works as a table dumper. Because you don’t know the struc-
ture of the table to which the program may be asked to dump this code, you’ll need to convert
each column value to a string prior to displaying it in the console window. This sample pro-
gram does not manipulate the data beyond that.

For this application, this is an acceptable method to employ. On the other hand, for an
application that accepts user input, you need to use the correct data type for each input value.
For example, you don’t use a string to store a date value, don't store date data in a character
column, and so forth. This application only works correctly with the basic database types; it
doesn’t work with LOB columns or XML types for example. Listing 2-38 contains the single
method that you use to accomplish this task. You can download this project (DataReader)
from this chapter’s folder in the Downloads section of the Apress website (www.apress.com).

Listing 2-38. The Main Method Code

static void Main(string[] args)
{
if (args.Length != 4)
{
Console.WriteLine("Incorrect number of command line parameters.");

return;
}

// Build a connect string based on the command-line parameters
string connString = "User Id=" + args[0].ToString() + ";";
connString += "Password=" + args[1].ToString() + ";";
connString += "Data Source=" + args[2].ToString();

OracleConnection oraConn = new OracleConnection();
oraConn.ConnectionString = connString;

// build the sql statement based on the command-line parameter
// we can’t use a bind variable here
string sqlStatement = "select * from " + args[3].ToString();

// the number of fields in the result set
int fieldCount = 0;

CHAPTER 2 ■ RETRIEVING DATA102

4258_Ch02_CMP1 9/16/04 4:15 PM Page 102

// used in our counter loops
int i = 0;

try
{
oraConn.Open();

}
catch (Exception ex)
{
Console.WriteLine("Exception caught {0}", ex.Message);

}

if (oraConn.State == ConnectionState.Open)
{
try
{
// create the command object
OracleCommand cmdSQL = new OracleCommand(sqlStatement,oraConn);

// get a data reader
OracleDataReader dataReader = cmdSQL.ExecuteReader();

// the number of fields in the result set
fieldCount = dataReader.FieldCount;

// output a comma separated header
for (i = 0; i < fieldCount; i++)
{
Console.Write(dataReader.GetName(i));

if (i < fieldCount - 1)
{
Console.Write(",");

}
}

Console.WriteLine();

// output a comma separated "line" of data
while (dataReader.Read())
{
for (i = 0; i < fieldCount; i++)
{
// check if the data is null or not
if (!dataReader.IsDBNull(i))
{
// not null, so write value

CHAPTER 2 ■ RETRIEVING DATA 103

4258_Ch02_CMP1 9/16/04 4:15 PM Page 103

// we use the "item" method by
// specifying the index rather than
// using a typed accessor
Console.Write(dataReader[i].ToString());

}
else
{
// null value
Console.Write("(null)");

}

if (i < fieldCount - 1)
{
Console.Write(",");

}
}

Console.WriteLine();
}

}
catch (Exception ex)
{
Console.WriteLine("Exception caught {0}", ex.Message);

}
}

if (oraConn.State == ConnectionState.Open)
{
oraConn.Close();

}

oraConn.Dispose();
}

As you can see, this code is fairly basic in its error handling and capabilities. However, it
demonstrates the ease with which a result set can be generically processed. The FieldCount
property, IsDBNull method, and the Item access method make this simple to accomplish. The
inline comments in the code indicate the important pieces of information. Listing 2-39 illus-
trates a sample execution of the application to create a comma-separated dump of the JOBS
table you used earlier.

Listing 2-39. Running the DataReader Project

C:\My Projects\ProOraNet\Oracle\C#\Chapter02\DataReader\bin\Debug>
DataReader.exe hr demo oranet jobs

CHAPTER 2 ■ RETRIEVING DATA104

4258_Ch02_CMP1 9/16/04 4:15 PM Page 104

JOB_ID,JOB_TITLE,MIN_SALARY,MAX_SALARY
AD_PRES,President,20000,40000
AD_VP,Administration Vice President,15000,30000
AD_ASST,Administration Assistant,3000,6000
FI_MGR,Finance Manager,8200,16000
FI_ACCOUNT,Accountant,4200,9000
AC_MGR,Accounting Manager,8200,16000
AC_ACCOUNT,Public Accountant,4200,9000
SA_MAN,Sales Manager,10000,20000
SA_REP,Sales Representative,6000,12000
PU_MAN,Purchasing Manager,8000,15000
PU_CLERK,Purchasing Clerk,2500,5500
ST_MAN,Stock Manager,5500,8500
ST_CLERK,Stock Clerk,2000,5000
SH_CLERK,Shipping Clerk,2500,5500
IT_PROG,Programmer,4000,10000
MK_MAN,Marketing Manager,9000,15000
MK_REP,Marketing Representative,4000,9000
HR_REP,Human Resources Representative,4000,9000
PR_REP,Public Relations Representative,4500,10500

C:\My Projects\ProOraNet\Oracle\C#\Chapter02\DataReader\bin\Debug>

Using Visual Studio and the Microsoft Data Provider
For the final example in this chapter, you’re going to switch to the Microsoft data provider and
you’re going to use the Visual Studio design environment to create your objects and set your
properties. You can access this project (MSProvider) in this chapter’s folder of the Downloads
section of the Apress website (www.apress.com).

You’ll implement the same sample you did in the “Bind Variables and the OracleParameter
Class” section. This allows me to highlight the slight differences between the two providers.
For example, the BindByName property isn’t directly exposed by the current Microsoft data
provider, so the bindings in this sample are positional rather than by name (as was the case
for the Lookup 2 button in the ODP.NET version).

■NOTE By setting the ParameterName property of an OracleParameter object in the Microsoft provider,
you can implicitly use bind by name functionality.

Also, I’ll be able to point out the slight code differences that arise from using the visual
design tools to set most of your properties and to create your objects rather than handcrafting
them.

CHAPTER 2 ■ RETRIEVING DATA 105

4258_Ch02_CMP1 9/16/04 4:15 PM Page 105

As with the OracleParameter sample earlier, here I break the tasks down into a series of
steps.

1. First, create a new Windows Forms project and create a form like the one you used in
the ODP.NET sample (see Figure 2-10).

Figure 2-18 illustrates what the form should look like.

Figure 2-18. The MSProvider form

2. Once you’ve created the form, drag an OracleConnection from the toolbox to the form.

This is illustrated in Figure 2-19. As you can see, I named the connection oraConn.

Figure 2-19. Creating the OracleConnection object on the form

CHAPTER 2 ■ RETRIEVING DATA106

4258_Ch02_CMP1 9/16/04 4:15 PM Page 106

3. To create a connection string for the connection object, you can either

• Type it directly into the ConnectionString property in the Properties window, or

• Use a wizard to create it for you.

Use the wizard approach here because you’ve already seen how to type it in yourself in
the console applications you have developed in this chapter.

4. To create your connection string using the wizard, select the oraConn connection
object.

5. Once you’ve selected it, drop down the ConnectionString property window as illustrated
in Figure 2-20.

Figure 2-20. Starting the ConnectionString wizard

6. Select <New Connection…> in the ConnectionString property window; the Data Link
Properties window displays.

7. In the Data Link Properties window, specify the hr user, the TNS alias, and the password.

In this case, creating a new connection is identical to the process you used in the
“Server Explorer Database Connection” section of Chapter 1. When I did this, I elected
to include the password because this is a simple demo.

Once you’ve finished creating the connection, the connection string appears in the
ConnectionString property window.

Now that you have identified and created the connection, you’ll create the command
objects the sample application uses and set the properties of these objects.

1. First, create the command object that you’ll use to retrieve the EMPLOYEE_ID data from
the database.

2. Now drag an OracleCommand object from the toolbox to the form. (I’ve named the com-
mand object cmdGetIDs.)

CHAPTER 2 ■ RETRIEVING DATA 107

4258_Ch02_CMP1 9/16/04 4:15 PM Page 107

3. To create the SQL statement to serve as the CommandText property, first assign a con-
nection to the command object.

This process is illustrated in Figure 2-21.

Figure 2-21. Assigning a connection to the command object

4. Now click the ellipses (…) in the CommandText property window.

Doing so launches the Query Builder wizard. The Query Builder begins by presenting
the Add Table dialog, as shown in Figure 2-22.

Figure 2-22. The Query Builder wizard

■NOTE In order to use the Query Builder visual tool inside of Visual Studio to graphically create your SQL
statements, you need to use a separate command object for each action. This means you need to create five
command objects. This isn’t great for resource usage; however, if you wish to use the Visual Studio graphical
designer tools, this is a side effect.

CHAPTER 2 ■ RETRIEVING DATA108

4258_Ch02_CMP1 9/16/04 4:15 PM Page 108

CHAPTER 2 ■ RETRIEVING DATA 109

5. Select the EMPLOYEES table in the list and click add as illustrated in Figure 2-23.

Figure 2-23. Adding the EMPLOYEES table to the Query Builder

6. Once you’ve added the EMPLOYEES table, click the Close button to dismiss the Add
Table dialog.

7. Next, select the EMPLOYEE_ID column and set the Sort Order attribute to 1 (see Figure 2-24).

8. Click the OK button when you’re done to return to the form designer.

Figure 2-24. Setting the properties in the Query Builder

4258_Ch02_CMP1 9/16/04 4:15 PM Page 109

9. Add four additional OracleCommand objects to the form and set the connection property
to oraConn as you did with the cmdGetIDs command object earlier (see Figure 2-25).

Figure 2-25. The five command objects on the form

10. Set the CommandText property for the cmdLookup1 command object as illustrated in
Figure 2-26. Click the ellipses (…) in the CommandText property in the Properties Window
to start the Query Builder wizard. Pay particular attention to how the parameter is
specified in the Criteria column.

Figure 2-26. Specifying the cmdLookup1 properties

CHAPTER 2 ■ RETRIEVING DATA110

4258_Ch02_CMP1 9/16/04 4:15 PM Page 110

11. Click the OK button to close the Query Builder.

12. Click the ellipses (…) in the Parameters property window. In Figure 2-27, you can see
how the data provider derived the properties.

Figure 2-27. The parameter properties for the cmdLookup1 command object

13. Click Cancel when you’re done viewing the parameter properties.

The process for configuring the properties for cmdLookup2 is illustrated in Figure 2-28 and
is described in the following steps:

1. Add the two bind variables to be used in the Criteria column.

2. check the Output column for the EMAIL and PHONE_NUMBER columns to indicate
that these columns should be displayed in the query output.

3. Make sure you uncheck the Output column for the FIRST_NAME and LAST_NAME
columns because you want to use these columns in the "where clause" of the SQL
statement but you don’t want to display their values.

CHAPTER 2 ■ RETRIEVING DATA 111

4258_Ch02_CMP1 9/16/04 4:15 PM Page 111

Figure 2-28. Specifying the cmdLookup2 properties

At this point, you’ve completed your visual setup for the sample.

■NOTE Since the CommandText for the two NoBinds command objects involves concatenating values at
run time, you do not specify that property at this time.

The Connect Button Code
This code (see Listing 2-40) operates in very much the same manner as the code using the
Oracle Data Provider.

Listing 2-40. The Connect Button Code

private void btnConnect_Click(object sender, System.EventArgs e)
{
if (oraConn.State != ConnectionState.Open)
{
try
{
oraConn.Open();

CHAPTER 2 ■ RETRIEVING DATA112

4258_Ch02_CMP1 9/16/04 4:15 PM Page 112

MessageBox.Show(oraConn.ConnectionString, "Successful Connection");
}
catch (Exception ex)
{
MessageBox.Show(ex.Message,"Exception Caught");

}
}

}

As you can see here, the code only has to perform an Open method call because the Con-
nectionString property was set at design time using the visual designer.

The Get IDs Button Code
Like the code for the Connect button, this code is the same as the code from the equivalent
hand-built sample, except that the creation of the OracleCommand object and the setting of its
properties have been removed. Listing 2-41 contains the code for this task.

Listing 2-41. The Get IDs Button Code

private void btnGetIDs_Click(object sender, System.EventArgs e)
{
try
{
// get a data reader
OracleDataReader dataReader = cmdGetIDs.ExecuteReader();

// simply iterate the result set and add
// the values to the drop down list
while (dataReader.Read())
{
// cbEmpIds is combo box on form
cbEmpIds.Items.Add(dataReader.GetDecimal(0));

}
}
catch (Exception ex)
{
MessageBox.Show(ex.Message,"Exception Caught");

}
}

The Lookup 1 Button Code
The code for the Lookup 1 button is contained in Listing 2-42. As with the other code in this
section, this code omits the object creation and parameter setting code.

CHAPTER 2 ■ RETRIEVING DATA 113

4258_Ch02_CMP1 9/16/04 4:15 PM Page 113

Listing 2-42. The Lookup 1 Button Code

private void btnLookup1_Click(object sender, System.EventArgs e)
{
// cbEmpIds is combo box on form
object selectedItem = cbEmpIds.SelectedItem;

if (selectedItem != null)
{
// we need to set the parameter value
cmdLookup1.Parameters[0].Value = Convert.ToDecimal(selectedItem.ToString());

// get our data reader
OracleDataReader dataReader = cmdLookup1.ExecuteReader();

// get the results - our query will only return 1 row
// since we are using the primary key
if (dataReader.Read())
{
// lblFirstName and lblLastName are labels on form
lblFirstName.Text = dataReader.GetString(0);
lblLastName.Text = dataReader.GetString(1);

}

dataReader.Close();
dataReader.Dispose();

}
}

The Lookup 2 Button Code
As with the Lookup 1 button code, this code omits the object creation and parameter setting
code. However, this code uses positional rather than named binding because the BindByName
property is not supported by the Microsoft data provider. This is different from the code that
uses the Oracle Data Provider. Listing 2-43 contains the code for this button.

Listing 2-43. The Lookup 2 Button Code

private void btnLookup2_Click(object sender, System.EventArgs e)
{
// we need to bind in order since the Microsoft provider
// does not support the BindByName property
// lblFirstName and lblLastName are labels on the form
cmdLookup2.Parameters[0].Value = lblFirstName.Text;
cmdLookup2.Parameters[1].Value = lblLastName.Text;

// get our data reader
OracleDataReader dataReader = cmdLookup2.ExecuteReader();

CHAPTER 2 ■ RETRIEVING DATA114

4258_Ch02_CMP1 9/16/04 4:15 PM Page 114

// get the results - our query will only return 1 row
// since we are using known unique values for the first
// and last names
if (dataReader.Read())
{
// lblEmailText and lblPhoneText are labels on the form
lblEmailText.Text = dataReader.GetString(0);
lblPhoneText.Text = dataReader.GetString(1);

}

dataReader.Close();

dataReader.Dispose();
}

The No Binds Button Code
The code for the No Binds button resembles the code from the previous section because we
must build the CommandText property within the code itself. The main difference is that you
aren’t creating the command object and setting the properties. This code is contained in
Listing 2-44.

Listing 2-44. The No Binds Button Code

private void btnNoBinds_Click(object sender, System.EventArgs e)
{
// this illustrates the "traditional" approach
// that does not use bind variables

// cbEmpIds is combo box on the form
object selectedItem = cbEmpIds.SelectedItem;

if (selectedItem != null)
{
OracleDataReader dataReader;

// we must build our command text string
// since we are concatenating values at run time
cmdNoBinds1.CommandText = "select first_name, last_name from employees
where employee_id = " + selectedItem.ToString();

// get our data reader
dataReader = cmdNoBinds1.ExecuteReader();

// get the results - our query will only return 1 row
// since we are using the primary key
if (dataReader.Read())
{

CHAPTER 2 ■ RETRIEVING DATA 115

4258_Ch02_CMP1 9/16/04 4:15 PM Page 115

// lblFirstName and lblLastName are labels on the form
lblFirstName.Text = dataReader.GetString(0);
lblLastName.Text = dataReader.GetString(1);

}

dataReader.Close();

// get the data that Lookup 2 performed above
// again, we must build the string here in code
// rather than in the design environment
// lblFirstName and lblLastName are labels on the form
cmdNoBinds2.CommandText = "select email, phone_number from employees
where first_name = '" + lblFirstName.Text + "'
and last_name = '" + lblLastName.Text +"'";

// get our data reader
dataReader = cmdNoBinds2.ExecuteReader();

// get the results - our query will only return 1 row
// since we are using known unique values for the first
// and last names
if (dataReader.Read())
{
// lblEmailText and lblPhoneText are labels on the form
lblEmailText.Text = dataReader.GetString(0);
lblPhoneText.Text = dataReader.GetString(1);

}

dataReader.Close();
dataReader.Dispose();

}
}

As you can see from the sample code in this section, the primary difference is how you
create objects and set properties. Of course, in the previous section, you could have elected to
create all of your objects at the form level as you did in this section. However, in this section, you
had to create the objects at the form level because you used the visual design tools. If you had
chosen not to use the visual tools, the code you created here, with the obvious omission of the
features provided by the Oracle Data Provider that are not present in the Microsoft provider,
would have been remarkably similar. This sample provides the same functionality as the hand-
built ODP.NET sample, including the bind variable behavior you explored using SQL*Plus.

CHAPTER 2 ■ RETRIEVING DATA116

4258_Ch02_CMP1 9/16/04 4:15 PM Page 116

Chapter 2 Wrap-Up
Similar to the first chapter, this chapter contains a lot of foundational information. I began the
chapter with a look at the template projects that I used to create the sample projects in this
chapter. I then showed you how to develop a simple, but complete, data retrieval application
before I moved into an investigation of the data provider classes that are most relevant for
data retrieval operations. Along the way, I highlighted differences between the Oracle Data
Provider with the Microsoft provider and explained which features are not currently available
in the Microsoft provider. In particular, I examined the connection, command, parameter, and
reader classes in a fair amount of detail. Familiarity with these classes will go a long way as
you develop applications—they are used in virtually all applications that work with the Oracle
database.

I concluded this chapter with a series of samples designed to highlight key areas of the
data provider classes. These samples, although certainly not exhaustive, should provide a
strong base from which to further explore data retrieval topics I didn’t addressed here. You
will, of course, be using the data retrieval concepts and techniques developed here through-
out the remainder of the book. In fact, in the next chapter, you will learn that the data retrieval
principles are still relevant.

CHAPTER 2 ■ RETRIEVING DATA 117

4258_Ch02_CMP1 9/16/04 4:15 PM Page 117

4258_Ch02_CMP1 9/16/04 4:15 PM Page 118

