
Advanced Connections
and Authentication

In this chapter, you’ll revisit the topic of connections, which I first addressed in Chapter 1,
as well as look at some additional authentication methods above and beyond the basic user-
name/password method that you’ve used up to this point. You’ll examine the difference
between privileged and non-privileged connections and learn how to connect to the
database using a privileged connection.

A topic you may find confusing is how to use operating system authentication with the
Oracle database. In this chapter, you work through the process of configuring the system to
allow for Windows operating system authentication and create an operating system–authenti-
cated connection. One of the underutilized features of the Oracle database is its ability to
implement password expiration, password lockout and password changing. I’ll address these
topics and round out the chapter by examining connection pooling and multiplexing.

By this point, you’re very familiar with the username/password method of authenticating
to the database using the Connection object because that is the method all of the sample code
has used thus far. One clear characteristic of this connection method is that the user must
provide a username and password. In turn, the password is (ideally) maintained—that is, the
password is changed on a regular basis. Sometimes some users see this maintenance as a
chore or optional task. As a result, the administrator can implement password rules to enforce
things such as required password changes. However, when you use operating system authen-
tication, this activity becomes unnecessary in the database. When you use operating system
authentication, you no longer need to maintain passwords in the database. In fact, you can’t
maintain them in the database because no password information is stored there.

Another type of connection that you haven’t yet seen is what is known as a privileged
connection. Of course, all connections have privileges of some sort. When I’m discussing privi-
leged connections I mean a connection that has one of two system privileges:

The SYSDBA privilege: This is the highest administrative privilege an account can have.
This privilege allows the user to perform all activities on a database.

The SYSOPER privilege: This privilege has slightly fewer abilities than the SYSDBA privi-
lege. For example, a user connected with this privilege can’t create a new database and
may only perform certain types of database recovery operations.

249

C H A P T E R 7

■ ■ ■

4258_Ch07_CMP1 9/30/04 7:40 PM Page 249

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION250

In practice, typical .NET applications don’t need to connect to a database with the SYSDBA
or SYSOPER privileges. However, you may encounter times when you’re creating an application
that does need to connect with one of these privileges. For instance, an application that starts
up or shuts down a database needs to use the SYSOPER privilege. Such an application can use
the SYSDBA privilege, but that is an over-privileging if the application doesn’t need to perform
activities other than start up or shut down. If you’re creating an application that creates an Ora-
cle database from within the application, then you need to connect with the SYSDBA privilege
because the SYSOPER privilege doesn’t allow for this capability.

You’ll also take a look at the ability to connect to the default database. I find this most
useful in situations where I don’t know the connection information for a database in advance.
Another situation where this may come in handy is when databases are in different environ-
ments, such as a Sandbox, a Development, and a Test environment. When you allow the
application to connect to the default database, you aren’t required to configure the network-
ing components as you did in Chapter 1 when you created your standard configuration. Of
course, whether or not you want this is a question you and your database administrator need
to discuss. I believe this is convenient or a short cut that you should use where appropriate in
your environment.

The Default Database Connection
You can connect to a database without specifying the database in the connection string. When
you connect in this manner, the database is known as a default database. The default database
is determined by the value of the ORACLE_SID environment variable. The concept of the
default database connection is only relevant on a server. As a result, the code you write in this
section must run on the same machine as the default Oracle database. Recall that you may
assign the value for the ORACLE_SID variable in several places:

The Registry: You can set the ORACLE_SID under the Oracle Home registry hive. On my
system, the ORACLE_SID for my 10g installation is set under the
HKLM\SOFTWARE\ORACLE\KEY_OraDatabase101 key.

The Environment Variables dialog: You can set the ORACLE_SID in the System Variables
section.

The Environment Variables dialog: You can set the ORACLE_SID in the User Variables
section.

In a Command Prompt window: Using the set command, you can set the ORACLE_SID
value. For example, set ORACLE_SID=LT10G.

The locations where you may specify the value are listed in hierarchical order from lowest
precedence to highest. For example, if the value is set in the registry, and also in the User Vari-
ables section of the Environment Variables dialog, the value specified in the User Variables
section takes precedence over the value specified in the registry.

4258_Ch07_CMP1 9/30/04 7:40 PM Page 250

If you need to set values for the Oracle environment variables, I strongly recommend
that you set them in the registry and then override them in a command prompt window if
you need to. If you choose to set them using the Environment Variables dialog, be aware that
it may cause unexpected behavior in the Oracle utilities that can be hard to debug. When
multiple versions of the Oracle software are installed on a system, Oracle determines the envi-
ronment or profile for each version based on the entries specified under the registry hive for
each version of the software. This effectively segregates the environment configuration for
each version into distinct profiles. When you specify a configuration variable using the Envi-
ronment Variables dialog, that value overrides any entries in the registry for all versions of the
software installed.

As a practical example, let’s look at my system; I have Oracle versions 8i, 9i, and 10g
installed. Under the registry keys for each of these versions, I’ve specified the ORACLE_SID for
the corresponding version of the database: LT8I for the 8i database, LT9I for the 9i database,
and LT10G for the 10g database. If I start the 9i version of SQL*Plus, Oracle uses the LT9I value
for the ORACLE_SID because it’s specified under the 9i home registry hive. If I specify the
ORACLE_SID using the Environment Variables dialog as LT10G, when I start the 9i version of
SQL*Plus, the ORACLE_SID is no longer LT9I; it is LT10G. This means that LT10G has become
my default database for my 9i software. You’ll probably find this confusing, if you are unaware
of what has transpired.

If you need to examine the registry to determine the current value for the ORACLE_SID key,
the key is located in the HKLM\SOFTWARE\ORACLE\KEY_HomeName hive for 10g and the HKLM\SOFTWARE\
ORACLE\HOMEN hive for previous releases. Refer to Chapter 1 if you need a refresher on the Oracle
server architecture.

■TIP Because the ORACLE_SID value is stored in the registry, you can’t issue an echo %ORACLE_SID%
command in a command prompt window to determine the value.

In order to illustrate how to connect to the default database on an Oracle host machine, I
take the “HelloOracle” example I used in Chapter 1 and, with a very slight modification, enable
it to connect to the default database. By doing so, I create a new Visual Studio solution named
DefaultConnection.

■NOTE Be sure to add a reference to the Oracle.DataAccess.dll assembly to the project and include
the using Oracle.DataAccess.Client; directive at the top of the source file if you’re creating a new
solution.

Listing 7-1 contains the modified Main method from the HelloOracle example. You can
find this sample (DefaultConnection) in this chapter’s folder in the Downloads section of the
Apress website (www.apress.com).

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 251

4258_Ch07_CMP1 9/30/04 7:40 PM Page 251

Listing 7-1. The Modified Main Method from the HelloOracle Sample

static void Main(string[] args)
{
// Use the default database by omitting the Data Source connect
// string attribute.
String connString = "User Id=oranetuser;Password=demo";
OracleConnection oraConn = new OracleConnection(connString);

try
{
oraConn.Open();

Console.WriteLine("\nHello, Default Oracle Database Here!\n");
Console.WriteLine("Connection String: ");
Console.WriteLine(oraConn.ConnectionString.ToString() + "\n");
Console.WriteLine("Current Connection State: ");
Console.WriteLine(oraConn.State.ToString() + "\n");
Console.WriteLine("Oracle Database Server Version: ");
Console.WriteLine(oraConn.ServerVersion.ToString());

}
catch (Exception ex)
{
Console.WriteLine("Error occured: " + ex.Message);

}
finally
{
if (oraConn.State == System.Data.ConnectionState.Open)
{
oraConn.Close();

}
}

}

To take advantage of connecting to the default database, the only change you need to
make to the source code is in the definition of the connection string. By omitting the Data
Source attribute from the connection string, you indicate to the Oracle Data Provider for .NET
that you want to connect to the default database. Listing 7-2 contains the output that results
from running this example.

Listing 7-2. The Output of the DefaultConnection Sample

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\DefaultConnection\bin\Debug>�
DefaultConnection.exe

Hello, Default Oracle Database Here!

Connection String:
User Id=oranetuser;

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION252

4258_Ch07_CMP1 9/30/04 7:40 PM Page 252

Current Connection State:
Open

Oracle Database Server Version:
10g

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\DefaultConnection\bin\Debug>

Notice in the output that the connection string that displays no longer contains the Data
Source attribute. If you have more than one database on the machine you’re using, it’s easy to
illustrate how you can set the ORACLE_SID environment variable in a command prompt win-
dow to override the value set in the registry. This also illustrates that you are, in fact, connecting
to the default database as specified by the value of this variable. Listing 7-3 contains the output
of the DefaultConnection sample after you change the value of the ORACLE_SID environment
variable in the command prompt window.

Listing 7-3. The Output of the DefaultConnection Example After Changing the ORACLE_SID

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\DefaultConnection\bin\Debug>�
set ORACLE_SID=LT8I

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\DefaultConnection\bin\Debug>�
DefaultConnection.exe

Hello, Default Oracle Database Here!

Connection String:
User Id=oranetuser;

Current Connection State:
Open

Oracle Database Server Version:
8.1.7.4.1

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\DefaultConnection\bin\Debug>

In Listing 7-3, you see that I’ve overridden the value of the ORACLE_SID as specified in
my registry (LT10G) with the value LT8I. The database specified by LT8I is, as I am sure you
have guessed, an Oracle8i database that you can see in the Oracle Database Server Version
informational output.

At this point, you may be asking yourself what would happen if the value for the ORACLE_SID
was missing from the registry and wasn’t specified elsewhere. In order to demonstrate what
happens in this case, I’ve temporarily removed the ORACLE_SID key from my registry. Listing 7-4
illustrates what occurs when this is the case. In this listing, I also explicitly undefine the
ORACLE_SID value in the command prompt window.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 253

4258_Ch07_CMP1 9/30/04 7:40 PM Page 253

■CAUTION If you remove the registry key or set it to no value, be sure you undo this operation immedi-
ately after testing.

Listing 7-4. The Output of the DefaultConnection Sample with No ORACLE_SID Value Set

C:\My Projects\ProOraNet\Chapter07\DefaultConnection\bin\Debug>set ORACLE_SID=

C:\My Projects\ProOraNet\Chapter07\DefaultConnection\bin\Debug>�
DefaultConnection.exe
Error occured: ORA-12560: TNS:protocol adapter error

C:\My Projects\ProOraNet\Chapter07\DefaultConnection\bin\Debug>

As you can see in Listing 7-4, the Oracle client software immediately returns an error when
it is unable to determine a value for the ORACLE_SID variable. To round out your exploration of
connecting to the default database, I’ll illustrate that the value specified for the ORACLE_SID
must be a valid SID. This value can’t be a TNS alias.

Listing 7-5 contains the results of running the sample code with a TNS alias specified in
place of a valid SID. The error generated in this case is the same as when no value is present.

Listing 7-5. The Output of the DefaultConnection Sample with an Invalid ORACLE_SID

C:\My Projects\ProOraNet\Chapter07\DefaultConnection\bin\Debug>�

set ORACLE_SID=ORANET

C:\My Projects\ProOraNet\Chapter07\DefaultConnection\bin\Debug>�
DefaultConnection.exe
Error occured: ORA-12560: TNS:protocol adapter error

C:\My Projects\ProOraNet\Chapter07\DefaultConnection\bin\Debug>

Using tnsnames-less Connections
As the number of database installations increases and as systems become more diverse, main-
taining a tnsnames.ora file for every database can become cumbersome. Oracle has several
solutions to address these concerns including integrating with Microsoft Active Directory and
its own Oracle Internet Directory product. However, a more simple, do-it-yourself solution
that may be practical involves creating tnsnames-less connections.

What this means is that you connect to a database via the Oracle networking architecture
but without using a TNS alias specified in a tnsnames.ora file. This is somewhat similar to the
way a JDBC Thin driver connection string in Java works. Rather than placing the connection
information into a file, you’ll embed it into the connection string itself. Using the standard
tnsnames method, you’ve been specifying a connection string such as

User Id=oranetuser; Password=demo; Data Source=oranet;

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION254

4258_Ch07_CMP1 9/30/04 7:40 PM Page 254

where oranet is a tnsnames alias. You can take the information that the oranet alias is used to
represent from the tnsnames file and substitute it into the Data Source attribute of the con-
nection string. This results in a more busy connection string for the Connection object, but I
provide some abstraction for this in the sample code. If you use this technique, the connec-
tion string above would become

"User Id=oranetuser; Password=demo; Data Source=(DESCRIPTION = (ADDRESS_LIST =�
(ADDRESS = (PROTOCOL = tcp)(HOST = ridmrwillim1801)(PORT = 1521))�
(CONNECT_DATA = (SERVICE_NAME = LT10G.SAND)));"

In order to implement this connection technique, you need to know the host, the port,
and the service name of the database to which you wish to connect. If you aren’t using the
service name to connect to a database, you could use the SID method instead. However,
Oracle recommends the service name method for databases version 8i or later. The service
name method supports Real Application Clusters and Grid systems whereas the SID method is
directed toward single instance/host systems.

An end user can dynamically supply the host, port, and service name parameters at run-
time, or you may specify them in an application-specific configuration file that you create.
However, if you store the information in a configuration file, you are basically duplicating the
creation of an entry in a tnsnames.ora file. As a result, I typically use dynamic values at run-
time. How you get the values at run-time is up to you. An end user can dynamically supply
them in an interactive application, or they you can read them from a database table—in a
noninteractive, system-level application, for example. You’ll implement this connection tech-
nique by creating a Windows Forms–based application, and you’ll supply the required values
interactively at run-time.

You can temporarily disable the tnsnames.ora file by renaming it to ensure that you’re
using your tnsnames-less connection. A new feature in the Oracle9i networking components
(which carries on into 10g as well) is that the command line utilities tell you which file they
used to carry out the request. One of these commands is the tnsping utility. If you’ve ever used
the ping utility, this utility will be very familiar. Instead of pinging any network address, with
the tnsping utility, you ping an Oracle listener service. The utility allows you to verify a path-
way between Point A and Point B. Listing 7-6 illustrates the simple usage of the tnsping utility.
Here, I simply ping the oranet TNS alias that you’ve been using as your standard.

Listing 7-6. Using the tnsping Utility

C:\>tnsping oranet

TNS Ping Utility for 32-bit Windows: Version 10.1.0.2.0 -�
Production on 12-JUL-2004 13:23:55

Copyright (c) 1997, 2003, Oracle. All rights reserved.

Used parameter files:
c:\oracle\10.1\database\network\admin\sqlnet.ora

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 255

4258_Ch07_CMP1 9/30/04 7:40 PM Page 255

Used TNSNAMES adapter to resolve the alias
Attempting to contact (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)
(HOST = ridmrwillim1801)(PORT = 1521))) (CONNECT_DATA =�
(SERVICE_NAME = LT10G.SAND)))
OK (20 msec)

C:\>

As you might recall from Chapter 1, the sqlnet.ora file is an optional file, but if it exists, it
influences the Oracle networking environment. In Listing 7-6, you can see that the Oracle net-
working client has determined that my machine does have a sqlnet.ora file, and it reads it to
extract configuration information. The Used TNSNAMES adapter to resolve the alias infor-
mational message indicates that my sqlnet.ora file contains a directive to use the
tnsnames.ora file to resolve names.

Listing 7-7 shows what happens when the tnsnames.ora file is renamed, thus preventing
the Oracle networking client from using it to resolve names. The sqlnet.ora file has been left
intact.

Listing 7-7. The Results of a tnsping After Renaming the tnsnames.ora File

C:\oracle\10.1\database\network\admin>rename tnsnames.ora tnsnames.ora.bak

C:\oracle\10.1\database\network\admin>tnsping oranet

TNS Ping Utility for 32-bit Windows: Version 10.1.0.2.0 -�
Production on 12-JUL-2004 13:25:57

Copyright (c) 1997, 2003, Oracle. All rights reserved.

Used parameter files:
c:\oracle\10.1\database\network\admin\sqlnet.ora

TNS-03505: Failed to resolve name

C:\oracle\10.1\database\network\admin>

Like the previous tnsping, this attempt reads the sqlnet.ora file to retrieve configuration
information. However, the tnsnames.ora file no longer exists, so the networking client is unable
to resolve the TNS alias oranet. Ordinarily you don’t want this to happen. However, for this
sample, you want to ensure that the Oracle networking client isn’t able to resolve names. To
create your tnsnames-less sample, you need to create a new Visual C# Windows application.
I have called my Visual Studio solution DynamicConnection, as illustrated in Figure 7-1.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION256

4258_Ch07_CMP1 9/30/04 7:40 PM Page 256

Figure 7-1. The New Project dialog for the tnsnames-less sample

Once you’ve created the project and generated the skeleton code, create the labels, text
boxes, and buttons, as illustrated in Figure 7-2. (I’ve included relevant sections of the code
here—for all the details, refer to the code in this chapter’s folder on the Apress website.) Of
course, you should add a reference to the Oracle Data Provider for .NET assembly to the
project and include the relevant using directive in the source code for the form.

Figure 7-2. The main form used in the tnsnames-less sample

For this simple example, you create a single private method that takes the values it needs
to generate a TNS connection string as parameters. You call this method by simply passing
the values entered on the form. Listing 7-8 contains the private method and the code in the
Connect button click event.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 257

4258_Ch07_CMP1 9/30/04 7:40 PM Page 257

Listing 7-8. The Main Code to Create a tnsnames-less Connection

private void doDynamicConnection(
string p_user,
string p_password,
string p_host,
string p_port,
string p_service_name)

{
// build a tns connection string based on the inputs
string l_data_source = "(DESCRIPTION=(ADDRESS_LIST=" +
"(ADDRESS=(PROTOCOL=tcp)(HOST=" + p_host + ")" +
"(PORT=" + p_port + ")))" +
"(CONNECT_DATA=(SERVICE_NAME=" + p_service_name + ")))";

// create the .NET provider connect string
string l_connect_string = "User Id=" + p_user + ";" +
"Password=" + p_password + ";" +
"Data Source=" + l_data_source;

// attempt to connect to the database
OracleConnection oraConn = new OracleConnection(l_connect_string);

try
{
oraConn.Open();

// dislay a simple message box with our data source string
MessageBox.Show(
"Connected to data source: \n" + oraConn.DataSource,
"Dynamic Connection Sample");

}
catch (Exception ex)
{
MessageBox.Show(ex.Message,"Error Occured");

}
finally
{
if (oraConn.State == System.Data.ConnectionState.Open)
{
oraConn.Close();

}
}

}

private void btnConnect_Click(object sender, System.EventArgs e)
{
doDynamicConnection(

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION258

4258_Ch07_CMP1 9/30/04 7:40 PM Page 258

txtUserName.Text,
txtPassword.Text,
txtHost.Text,
txtPort.Text,
txtServiceName.Text);

}

Although the code to create the Data Source may seem busy, basically, it dynamically cre-
ates the text that appears in a tnsnames.ora file based on the input values. Simply substituting
this dynamically generated text in place of the TNS alias in the Data Source attribute of the
connection string allows you to connect to a database based on values supplied at run-time.
In Figure 7-3, I’ve completed the form with the same values I used to create the standard
TNS alias.

Figure 7-3. The Dynamic Connection Sample form

After you complete the form with the appropriate values, click the Connect button. A
message box that displays the generated connection string appears. A simple dialog displays
if an exception is trapped during the connection attempt. Figure 7-4 shows the dialog that
displays given the input values supplied in Figure 7-2.

Figure 7-4. The run-time results of the Dynamic Connection Sample

The ability to create database connections dynamically at run-time is a powerful capability.
You’ll find this technique especially useful in situations such as in a system where maintaining a
tnsnames.ora file isn’t feasible or desirable. One example of such a system is a central repository
that connects to various target databases. By creating a database table that contains all the infor-
mation you need to connect to the target databases, you can easily create a database-driven

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 259

4258_Ch07_CMP1 9/30/04 7:40 PM Page 259

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION260

solution that connects dynamically at run-time to subscribed databases. If you move the func-
tionality demonstrated in the private method in your sample form into a library, multiple
applications can take advantage of this technique.

Privileged and Non-Privileged Connections
The terms privileged and non-privileged, when used in conjunction with a connection, don’t
refer to any specific privileges a user account may or may not have been granted in a data-
base. This is because the privileged and non-privileged refer to system-level privileges and not
database-level privileges. This is most evident by the fact that these privileges allow you to
make a connection even if the database itself is not started or opened. Two system-level privi-
leges may be granted: SYSDBA or SYSOPER. Any connection that doesn’t utilize either of these
privileges is said to be non-privileged. Even though these are system-level privileges, they are,
from time to time, referred to as connection types or connection privileges. This is because
when you connect using one of these system-level privileges in a utility such as SQL*Plus,
the clause as SYSDBA or as SYSOPER is specified along with the connection string.

The SYSDBA and SYSOPER Privileges
There are a few differences between these two privileges. The SYSDBA privilege is the highest
privilege an account may have. An account that has this SYSDBA privilege can perform any
operation, and for this reason, you should connect to the database using this privilege spar-
ingly and only when you need it. For example, you’ll need this privilege when you create a new
database or perform certain types of database recovery operations.

The SYSOPER privilege is very similar to the SYSDBA privilege. The only system-level
functions the SYSDBA privilege provides that the SYSOPER privilege doesn’t are those that let
the user create a database and change the character set of a database. As a result, you should
take the same care when you grant this privilege that you do with the SYSDBA privilege.

However, one subtle difference between these two is important. When you make a
connection using either of these system-level privileges, the connection doesn’t utilize the
schema normally associated with the account making the connection. For connections you
establish using the SYSDBA privilege, the schema used is the SYS schema. Connections that
you establish using the SYSOPER privilege, on the other hand, use the PUBLIC schema. This
effectively prevents connections that use SYSOPER from being able to view or manipulate
data in private schemas.

If you have tried to connect as the user SYS, you may have received the error depicted in
Listing 7-9.

Listing 7-9. Attempting to Connect as SYS in SQL*Plus

C:\>sqlplus /nolog

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 13:31:35 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

SQL> connect sys

4258_Ch07_CMP1 9/30/04 7:40 PM Page 260

Enter password:
ERROR:
ORA-28009: connection to sys should be as sysdba or sysoper

SQL>

The default configuration of Oracle, as installed in the Appendix, is configured so that SYS
must explicitly connect as either SYSDBA or SYSOPER. In order to connect as SYSDBA, simply
specify as SYSDBA in the connection string.

■CAUTION Exercise proper care when you’re connecting as SYSDBA. This is a fully privileged connection
and should never be used for a normal connection. In addition, make sure you coordinate with your DBA if
you’re creating an application that makes such connections to the database—any administrator would want
to know about an application that makes connections of this type.

Because the SYSDBA and SYSOPER privileges are so powerful, you’ll grant them to your
administrative user for the samples in this section, and then you’ll revoke them when you
have completed the samples. Let’s begin by connecting as SYS using the SYSDBA privilege.
This is one of the few times that you use the SYS user. In this case, it is necessary to connect as
SYS in order to grant the SYSDBA privilege. Listing 7-10 demonstrates the process of connect-
ing as SYS and granting the SYSDBA and the SYSOPER privileges. Notice that you’re using the
default database connection as discussed in the last section.

Listing 7-10. Connecting as SYS and Granting the SYSDBA and SYSOPER Privileges

C:\>sqlplus /nolog

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 13:33:12 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

SQL> connect sys as sysdba
Enter password:
Connected.
SQL> grant sysdba to oranetadmin;

Grant succeeded.

SQL> grant sysoper to oranetadmin;

Grant succeeded.

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 261

4258_Ch07_CMP1 9/30/04 7:40 PM Page 261

Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

Now that your administrative user has the SYSDBA and the SYSOPER privileges, you can
connect with each privilege. When you connect as a privileged connection, as with the SYS
user, you must use the as clause to specify which privilege you wish to use for your connec-
tion. If you omit the clause, you’ll simply connect with your normal, non-privileged account.
Listing 7-11 demonstrates these concepts.

■NOTE You must install and configure the database and networking components in the same fashion as
the setup in the Appendix for this to work properly. This doesn’t mean that you must follow the installation
steps in the Appendix, only that your configuration must match it. This installation is a preconfigured installa-
tion type and it results in an installation configuration that is common.

Listing 7-11. Connecting with the SYSDBA and SYSOPER Privileges

C:\>sqlplus /nolog

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 13:35:02 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

SQL> connect oranetadmin
Enter password:
Connected.
SQL> /* format username column as alphanumeric with width of 16 */
SQL> /* format database column as alphanumeric with width of 24 */
SQL> COL USERNAME FORMAT A16
SQL> COL DATABASE FORMAT A24
SQL> SELECT A.USERNAME,
2 B.GLOBAL_NAME DATABASE
3 FROM USER_USERS A,
4 GLOBAL_NAME B;

USERNAME DATABASE
---------------- ------------------------
ORANETADMIN LT10G.SAND

1 row selected.

SQL> connect oranetadmin as sysdba
Enter password:
Connected.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION262

4258_Ch07_CMP1 9/30/04 7:40 PM Page 262

SQL> SELECT A.USERNAME,
2 B.GLOBAL_NAME DATABASE
3 FROM USER_USERS A,
4 GLOBAL_NAME B;

USERNAME DATABASE
---------------- ------------------------
SYS LT10G.SAND

1 row selected.

SQL> connect oranetadmin as sysoper
Enter password:
Connected.
SQL> SELECT A.USERNAME,
2 B.GLOBAL_NAME DATABASE
3 FROM USER_USERS A,
4 GLOBAL_NAME B;

no rows selected

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

As illustrated in Listing 7-11, when you connect with no system-level privilege specified,
you connect to your normal schema of ORANETADMIN. However, when you connect with SYS-
DBA or SYSOPER, things begin to get interesting. When you connect with the SYSDBA privilege,
your query to determine who you are returns SYS as the username. When you connect with the
SYSOPER privilege, your query returns no rows. This is because you’re connected to the special
schema PUBLIC and not to a real user. To further illustrate this, you’ll connect with no system-
level privileges, create a table, insert a record, and attempt to query the table. Listing 7-12
contains the code to illustrate this.

Listing 7-12. Schema Object Visibility When Connecting with System-Level Privileges

C:\>sqlplus /nolog

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 13:38:09 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

SQL> connect oranetadmin
Enter password:
Connected.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 263

4258_Ch07_CMP1 9/30/04 7:40 PM Page 263

SQL> create table t
2 (
3 c varchar2(32)
4);

Table created.

SQL> insert into t values ('Can you see me?');

1 row created.

SQL> commit;

Commit complete.

SQL> select c from t;

C

Can you see me?

1 row selected.

SQL> connect oranetadmin as sysdba
Enter password:
Connected.
SQL> select c from t;
select c from t

*
ERROR at line 1:
ORA-00942: table or view does not exist

SQL> select c from oranetadmin.t;

C

Can you see me?

1 row selected.

SQL> connect oranetadmin as sysoper
Enter password:
Connected.
SQL> select c from t;
select c from t

*

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION264

4258_Ch07_CMP1 9/30/04 7:40 PM Page 264

ERROR at line 1:
ORA-00942: table or view does not exist

SQL> select c from oranetadmin.t;
select c from oranetadmin.t

*
ERROR at line 1:
ORA-00942: table or view does not exist

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

As Listing 7-12 illustrates, all goes as expected when you connect with no system-level
privileges. You operate as yourself in this connection. When you connect with the SYSDBA
privilege, you get an error when you query your table. This is because you’re now connected
with the SYS schema. However, by specifying the table owner, you are able to successfully
query your table. When connected with the SYSOPER privilege, you simply aren’t able to see
the table at all.

■NOTE If you execute the grant select on t to public command, you can query your table while
you’re connected with the SYSOPER privilege.

Connecting as a Privileged User
Now that you understand the SYSDBA and SYSOPER privileges, you can examine how to con-
nect from a .NET application using either of these privileges. Under normal circumstances,
your applications don’t need to connect with either of these system privileges, but if your
application needs to shut down or start up a database, for example, it needs to connect with
either of these privileges.

Continuing with the trend of keeping things as simple as possible to focus on the topic at
hand, you’ll create a console application that simply connects as a privileged user, issues the
simple “Who am I?” query to verify that you have connected as a privileged user, displays the
results, and exits. Listing 7-13 contains the major points in the code for the PrivilegedConnec-
tion sample (which you can find in this chapter’s folder in the Downloads section of the
Apress website). To connect with either privilege, your code needs to include a new attribute
in the connection string. The attribute is the DBA Privilege attribute, and it must be assigned
either SYSDBA or SYSOPER to be valid.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 265

4258_Ch07_CMP1 9/30/04 7:40 PM Page 265

Listing 7-13. The SYSDBA and SYSOPER Privilege Test Code

static void Main(string[] args)
{
Class1 theClass = new Class1();

// our "basic" connection string
string conn_1 = "User Id=oranetadmin;" +
"Password=demo;" +
"Data Source=oranet";

// our "sysdba" connection string
string conn_2 = "User Id=oranetadmin;" +
"Password=demo;" +
"Data Source=oranet;" +
"DBA Privilege=SYSDBA";

// our "sysoper" connection string
string conn_3 = "User Id=oranetadmin;" +
"Password=demo;" +
"Data Source=oranet;" +
"DBA Privilege=SYSOPER";

// our "who am i?" query
string l_sql = "select a.username, " +
"b.global_name database " +
"from user_users a, " +
"global_name b";

theClass.privilegeTest(conn_1, l_sql);
theClass.privilegeTest(conn_2, l_sql);
theClass.privilegeTest(conn_3, l_sql);

}

void privilegeTest(string p_connect, string p_sql)
{
// a simple little helper method
// gets a connection, executes the sql statement,
// and prints the results (if any) to the console
OracleCommand oraCmd;
OracleDataReader oraReader;

OracleConnection oraConn = new OracleConnection(p_connect);

try
{

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION266

4258_Ch07_CMP1 9/30/04 7:40 PM Page 266

oraConn.Open();

oraCmd = new OracleCommand(p_sql,oraConn);

oraReader = oraCmd.ExecuteReader();

while (oraReader.Read())
{
Console.WriteLine("User: ");
Console.WriteLine(" " + oraReader.GetString(0));
Console.WriteLine("Database: ");
Console.WriteLine(" " + oraReader.GetString(1) + "\n");

}
}
catch (Exception ex)
{
Console.WriteLine("Error occured: " + ex.Message);

}
finally
{
if (oraConn.State == System.Data.ConnectionState.Open)
{
oraConn.Close();

}
}

}

After you create the project and successfully compile the code, a sample test should yield
results similar to those in Listing 7-14.

Listing 7-14. The Output from the Privilege Test

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\PrivilegedConnection\bin\Debug>�
PrivilegedConnection.exe
User:
ORANETADMIN

Database:
LT10G.SAND

User:
SYS

Database:
LT10G.SAND

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\PrivilegedConnection\bin\Debug>

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 267

4258_Ch07_CMP1 9/30/04 7:40 PM Page 267

Recall that when you connect with the SYSOPER privilege, you connect to the special
PUBLIC schema. Because you connect to the PUBLIC schema, your “Who am I?” query
returns no rows, and, therefore, there is output. Now that you’ve completed your exploration
of the SYSDBA and SYSOPER privileges, you’ll revoke them from our administrative user.
Listing 7-15 illustrates this process.

Listing 7-15. Revoking the SYSDBA and SYSOPER Privileges

C:\>sqlplus /nolog

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 13:43:24 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

SQL> connect sys as sysdba
Enter password:
Connected.
SQL> revoke sysdba from oranetadmin;

Revoke succeeded.

SQL> revoke sysoper from oranetadmin;

Revoke succeeded.

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

Connecting via Operating System Authentication
Connecting to a database via operating system authentication involves Oracle authenticating
the user account using Windows authentication. Operating system authentication isn’t limited
to the Windows platform; however, Windows is the only platform I investigated in this section.
When you connect via operating system authentication, you don’t need the user ID and pass-
word. The convention you use to indicate that operating system authentication should be
employed is a single forward slash (/) symbol. Rather than specifying a username in the
connection string, such as User Id=oranetuser, specify the user ID as User Id=/.

If you aren’t working in a stand-alone environment as I am, you may need to coordinate
efforts between your database administrator and your operating system administrator in
order to enable operating system authentication. There are two classes of operating system
authentication you can use: enterprise users and external users. To employ the enterprise
users method of authentication, you must have a directory server. Therefore, you need to
create an external user authentication scheme.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION268

4258_Ch07_CMP1 9/30/04 7:40 PM Page 268

In this section, you configure operating system authentication using the external user
scheme and ensure that everything is working properly by using SQL*Plus as your litmus test.
Once you verify that your configuration is working correctly, use your “Who am I?” console
application to illustrate connecting via operating system authentication in a .NET application.

Configuring Oracle for Operating System Authentication
In order to properly connect via operating system authentication, you must ensure that
Oracle is configured to allow such connections. By default, the sqlnet.ora file contains
the entry that enables operating system authentication. As we discussed in Chapter 1, the
SQLNET.AUTHENTICATION_SERVICES = (NTS) entry allows for authentication by the operating
system. Listing 7-16 is a representative sqlnet.ora file.

Listing 7-16. A sqlnet.ora File

C:\oracle\10.1\database\network\admin>type sqlnet.ora
SQLNET.ORA Network Configuration File:�
C:\oracle\10.1\database\network\admin\sqlnet.ora
Generated by Oracle configuration tools.

SQLNET.AUTHENTICATION_SERVICES= (NTS)

NAMES.DIRECTORY_PATH= (TNSNAMES)

C:\oracle\10.1\database\network\admin>

If your sqlnet.ora file doesn’t contain the entry for SQLNET.AUTHENTICATION_SERVICES, you
must add it to the file. Although the sqlnet.ora file influences the behavior of the Oracle net-
working components, some parameters influence the behavior of the database itself. These
parameters reside in what is known as the init file or the spfile. The spfile exists for Oracle9i
and Oracle10g databases, whereas you must use the init file in earlier versions. It’s still possi-
ble to use an init file in 9i and 10g if you manually configure your database and installation
process, but the preconfigured install types and the Oracle tools such as the Database Cre-
ation Assistant create a spfile.

You won’t make modifications to these parameters here; however, you do need to know
the value of one of them, os_authent_prefix, to properly configure your authentication exam-
ple. Oracle uses this parameter when it is authenticating external users. As the name of the
parameter implies, the value of this parameter is prefixed to the operating system username.
Listing 7-17 illustrates one method of determining the value of this parameter.

Listing 7-17. Determining the Value of the os_authent_prefix Parameter

C:\>sqlplus oranetadmin

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 13:46:03 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 269

4258_Ch07_CMP1 9/30/04 7:40 PM Page 269

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> show parameter os_authent_prefix

NAME TYPE VALUE
---------------------------- ----------- ----------------------------
os_authent_prefix string OPS$
SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

You can see that, on my system, the value of this parameter is OPS$. The value may be
different on your system or it may not be specified at all. If the value isn’t specified, it doesn’t
mean that operating system authentication won’t work or isn’t available, it just means that no
value will be prefixed to an operating system username. The Windows username that I use on
my system is willim18, and my host name is ridmrwillim1801. Therefore, when I authenticate
using operating system authentication to my database, I authenticate as OPS$RIDMRWILLIM1801\
WILLIM18.

Because I authenticate as OPS$RIDMRWILLIM1801\WILLIM18, I need to create that user in the
Oracle database. Listing 7-18 illustrates the process of creating a user for operating system
authentication.

Listing 7-18. Creating a User for Operating System Authentication

C:\>sqlplus oranetadmin

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 13:47:28 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> create user "OPS$RIDMRWILLIM1801\WILLIM18" identified externally
2 default tablespace users
3 temporary tablespace temp
4 quota unlimited on users;

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION270

4258_Ch07_CMP1 9/30/04 7:40 PM Page 270

User created.

SQL> grant connect to "OPS$RIDMRWILLIM1801\WILLIM18";

Grant succeeded.

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

As you can see, I used the administrative user to log in to SQL*Plus and manually create a
new user.

■TIP If you are part of a Windows domain, when you create the new user, you should include the
domain name in the username. For example, if I was in a domain called Liverpool, my user would be
OPS$LIVERPOOL\WILLIM18.

Testing Operating System Authentication
Now that you’ve successfully created your user to be authenticated by the operating system,
you can test this in SQL*Plus quite easily. You only need to specify a forward slash (/) for your
connect string. Then execute your “Who am I?” script to verify that you have connected as
expected. Listing 7-19 illustrates this process.

Listing 7-19. Testing Operating System Authentication

C:\>sqlplus /nolog

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 13:49:15 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

SQL> connect /
Connected.
SQL> COL USERNAME FORMAT A32
SQL> COL DATABASE FORMAT A24
SQL> SELECT A.USERNAME,
2 B.GLOBAL_NAME DATABASE
3 FROM USER_USERS A,
4 GLOBAL_NAME B;

USERNAME DATABASE

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 271

4258_Ch07_CMP1 9/30/04 7:40 PM Page 271

-------------------------------- ------------------------
OPS$RIDMRWILLIM1801\WILLIM18 LT10G.SAND

1 row selected.

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

By specifying only a / for your connect string, you’ve successfully connected to your
default database using operating system authentication. If you wish to connect to a database
using its TNS alias and operating system authentication, you simply supply the TNS alias as
part of the connect string as we discussed earlier. Of course, when you connect to a TNS alias,
your account must be set up properly in the destination database as it was in Listing 7-19. The
sample .NET code you develop in the following section (Listing 7-20) illustrates both methods
of connecting.

Operating System Authentication in .NET
Implementing operating system authentication in .NET code is trivial. Most of the work is in
the setup and verification to make sure that the authentication is working as you expect it to.
Because you’ve already set up and verified that your External User account is working as
expected, in this section, you implement your “Who am I?” sample query using operating sys-
tem authentication to the default database as well as your standard TNS alias. Listing 7-20
contains the core code you need to implement your sample. Of course, a reference to the
Oracle.DataAccess.dll assembly and a using Oracle.DataAccess.Client; are included in
the OSAuthenticatedConnection project (which you can access from this chapter’s folder
in the Downloads section of the Apress website).

Listing 7-20. The Core Code for Testing Operating System Authentication

static void Main(string[] args)
{
Class1 theClass = new Class1();

// our "default" database connection string
string conn_1 = "User Id=/";

// our "tns alias" database connection string
string conn_2 = "User Id=/;" +
"Data Source=oranet";

// our "who am i?" query
string l_sql = "select a.username, " +
"b.global_name database " +

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION272

4258_Ch07_CMP1 9/30/04 7:40 PM Page 272

"from user_users a, " +
"global_name b";

Console.WriteLine("Using the default database...");
theClass.authenticationTest(conn_1, l_sql);

Console.WriteLine("Using the tns alias...");
theClass.authenticationTest(conn_2, l_sql);

}

void authenticationTest(string p_connect, string p_sql)
{
// a simple little helper method
// gets a connection, executes the sql statement,
// and prints the results to the console
OracleCommand oraCmd;
OracleDataReader oraReader;

OracleConnection oraConn = new OracleConnection(p_connect);

try
{
oraConn.Open();

oraCmd = new OracleCommand(p_sql,oraConn);

oraReader = oraCmd.ExecuteReader();

while (oraReader.Read())
{
Console.WriteLine("User: ");
Console.WriteLine(" " + oraReader.GetString(0));
Console.WriteLine("Database: ");
Console.WriteLine(" " + oraReader.GetString(1) + "\n");

}
}
catch (Exception ex)
{
Console.WriteLine("Error occured: " + ex.Message);

}
finally
{
if (oraConn.State == System.Data.ConnectionState.Open)
{
oraConn.Close();

}
}

}

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 273

4258_Ch07_CMP1 9/30/04 7:41 PM Page 273

Running the sample code should produce results that are appropriate for your system
and resemble those in Listing 7-21.

Listing 7-21. The Output of the Operating System Authentication Test

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\OSAuthenticatedConnection\bin\Debug>�
OSAuthenticatedConnection.exe
Using the default database...
User:
OPS$RIDMRWILLIM1801\WILLIM18

Database:
LT10G.SAND

Using the tns alias...
User:
OPS$RIDMRWILLIM1801\WILLIM18

Database:
LT10G.SAND

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\OSAuthenticatedConnection\bin\Debug>

As expected, the results of your “Who am I?” query display the same data when connect-
ing via operating system authentication to both the default database and that same database
specified as a TNS alias. Using operating system authentication is a viable method for not hav-
ing to maintain a password for a database user as we discussed earlier. However, if you wish to
have a finer grained control over the password, then Oracle can accommodate that as well
when you’re using database authentication.

Password Management
The topic of password management can be rather broad. I will, therefore, limit the discussion
to three areas:

Changing a Database Password: You’ll look at changing a password via SQL*Plus as well
as in .NET code.

Dealing with Expired Database Passwords: Passwords can expire and thus need to be
changed.

Locking Out a Database Password: Accounts can be locked if password rules created by
the database administrator are violated.

These are the most common areas for dealing with password management. One common
misconception regarding Oracle passwords is that what is stored in the database isn’t the actual
password. Passwords in Oracle are really one-way hash values that result from an internal algo-
rithm that incorporates the password as defined by the user. It is, therefore, not possible to
reverse-engineer an Oracle password—no password is stored in the database, only the result
of the one-way hash algorithm.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION274

4258_Ch07_CMP1 9/30/04 7:41 PM Page 274

Changing a Database Password
A database user can change their own password. If the database user has the appropriate
database privilege (alter user), they may change the password for other users as well.

■NOTE The alter user privilege allows for more than just changing another user’s password. You can
find the complete list of attributes that can be changed by alter user under the alter user SQL state-
ment reference in the “Database SQL Reference” in the documentation set.

The command you use to change a password is simply alter user <username> identified
by <password>. Listing 7-22 illustrates how to do this via SQL*Plus.

Listing 7-22. Changing a Password in SQL*Plus

C:\>sqlplus oranetuser@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 13:53:30 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> alter user oranetuser identified by newpass;

User altered.

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

The database user, oranetuser, now has the password newpass. You may wish to change
the password back to what it was before by simply executing the command and specifying the
old password. Listing 7-23 contains the core code for a Windows Forms application named
PasswordChange that allows you to change the password back (or to any other value) if you
wish. This sample doesn’t allow you to change the password for any user in the database—
only for the oranetuser user.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 275

4258_Ch07_CMP1 9/30/04 7:41 PM Page 275

Listing 7-23. Simple Code to Change a Password

private void btnChangePassword_Click(object sender, System.EventArgs e)
{
if (txtNewPassword.Text != txtConfirmPassword.Text)
{
MessageBox.Show("New passwords do not match.", "Password Mismatch");

return;
}

string l_connect = "User Id=" + txtUserName.Text + ";" +
"Password=" + txtCurrentPassword.Text + ";" +
"Data Source=" + txtTNSAlias.Text;

string l_sql = "alter user " + txtUserName.Text + " " +
"identified by " + txtNewPassword.Text;

OracleCommand cmd;
OracleConnection oraConn = new OracleConnection(l_connect);

try
{
oraConn.Open();

cmd = new OracleCommand(l_sql,oraConn);

cmd.ExecuteNonQuery();

MessageBox.Show("Password changed successfully.", "Password Changed");
}
catch (Exception ex)
{
MessageBox.Show(ex.Message, "Error Occured");

}
finally
{
if (oraConn.State == System.Data.ConnectionState.Open)
{
oraConn.Close();

}
}

}

Figure 7-5 shows the simple form you’d use to capture the relevant information you need
to change the database password.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION276

4258_Ch07_CMP1 9/30/04 7:41 PM Page 276

Figure 7-5. The design-time representation of the form

Figure 7-6 shows the form at run-time. Because you changed the password for the orane-
tuser in SQL*Plus earlier, I changed it back to the value of demo, as it was previously.

Figure 7-6. The run-time representation of the form

Figure 7-7 shows the confirmation message that states that the password was changed
successfully.

Figure 7-7. The confirmation dialog

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 277

4258_Ch07_CMP1 9/30/04 7:41 PM Page 277

To verify that the password for oranetuser was successfully changed from newpass to
demo, create a SQL*Plus session and specify the new password. Listing 7-24 illustrates this
process (in order to make it explicit that the password was successfully changed, I specify the
password as part of the connection string in SQL*Plus).

Listing 7-24. Verifying That the Password Was Changed

C:\>sqlplus /nolog

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 13:56:07 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

SQL> connect oranetuser/demo@oranet
Connected.
SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

Dealing with Expired Database Passwords
If the database administrator for your system elects to implement password expiration, it’s
possible that the password for your user may expire. In this section, you simulate this situa-
tion by using SQL*Plus and manually expiring a password. After I demonstrate the concept in
SQL*Plus, you implement the .NET code to catch the expired password exception and then
allow the password to be changed. Listing 7-25 illustrates the process of manually expiring a
password from SQL*Plus. Notice that you connect as your administrative user to expire the
password for your typical-privileged user.

Listing 7-25. Manually Expiring a Password

C:\>sqlplus oranetadmin@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 14:01:20 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> alter user oranetuser password expire;

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION278

4258_Ch07_CMP1 9/30/04 7:41 PM Page 278

User altered.

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

The password for oranetuser has expired. When the user attempts their next connection,
Oracle detects that the password has expired and triggers a prompt for a new password.
Listing 7-26 illustrates this process.

Listing 7-26. Detection and Change of the Expired Password

C:\>sqlplus oranetuser@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 14:02:38 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:
ERROR:
ORA-28001: the password has expired

Changing password for oranetuser
New password:
Retype new password:
Password changed

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

■NOTE The password that is initially entered must be the correct expired password. If an invalid password
is entered, you receive the standard “invalid username or password” error message instead of being prompted
for a new password.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 279

4258_Ch07_CMP1 9/30/04 7:41 PM Page 279

To demonstrate how to trap and process the expired password in .NET, I clone the simple
Windows Form application used to change the password. The form itself doesn’t change. I
simply change the code inside the button click event. Listing 7-27 represents the code that
detects the expired password condition and connects with a new password. The new project is
called PasswordExpiration (see this chapter’s folder on the Downloads section of the Apress
website).

Listing 7-27. Changing an Expired Password

private void btnChangePassword_Click(object sender, System.EventArgs e)
{
// display a simple message if the "new" and
// the "confirm" passwords do not match
if (txtNewPassword.Text != txtConfirmPassword.Text)
{
MessageBox.Show("New passwords do not match.", "Password Mismatch");

return;
}

// build a connect string based on the user input
string l_connect = "User Id=" + txtUserName.Text + ";" +
"Password=" + txtCurrentPassword.Text + ";" +
"Data Source=" + txtTNSAlias.Text;

OracleConnection oraConn = new OracleConnection(l_connect);

try
{
// attempt to open a connection
// this should fail since we have expired the password
oraConn.Open();

}
catch (OracleException ex)
{
// trap the "password is expired" error code
if (ex.Number == 28001)
{
// dislay a simple marker to indicate we trapped the error
MessageBox.Show("Trapped Expired Password", "Expired Password");

// this method changes the expired password
oraConn.OpenWithNewPassword(txtNewPassword.Text);

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION280

4258_Ch07_CMP1 9/30/04 7:41 PM Page 280

// display a simple marker to indicate password changed
MessageBox.Show("Changed Expired Password", "Expired Password");

}
else
{
MessageBox.Show(ex.Message, "Error Occured");

}
}
finally
{
if (oraConn.State == System.Data.ConnectionState.Open)
{
oraConn.Close();

}
}

}

In Figure 7-8, you can see the form at run-time.

Figure 7-8. The Expired Password Sample form

By completing the text field in the form and clicking the Change Password button, you
should see the dialog depicted in Figure 7-9.

Figure 7-9. The Expired Password detected dialog

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 281

4258_Ch07_CMP1 9/30/04 7:41 PM Page 281

After dismissing the dialog that informs you that the expired password condition was
detected, you should see the dialog depicted in Figure 7-10.

Figure 7-10. The Expired Password changed dialog

To verify that the expired password was correctly changed, use SQL*Plus as illustrated in
Listing 7-28.

Listing 7-28. Verifying That the Expired Password Was Changed

C:\>sqlplus oranetuser@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 14:05:11 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

The sample code, as presented here, doesn’t verify that the new password you entered
was different from the old one. You should coordinate any password rules such as no pass-
word reuse with your database administrator if you’re using the password expiration feature.
Oracle has the ability to enforce a variety of password rules; however, this is a subject outside
the scope of this book because the creation of the password rules in the database relates to
your database administrator more than it does to us as developers. The definition of those
rules, on the other hand, is something that application developers and corporate security
departments are frequently involved in creating. If your database administrator has imple-
mented password rules, it’s possible that, in addition to password expiration, you may
encounter a user account that has been locked.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION282

4258_Ch07_CMP1 9/30/04 7:41 PM Page 282

Locking Out a Database Account
In addition to an expired password, it’s possible that an account can become locked out as
a result of database password rules that may be implemented. For example, if the database
administrator implements rules that dictate an account becoming locked after three unsuc-
cessful login attempts, and a user inputs an incorrect password three times in succession,
the account is then locked out. Unlike the case of an expired password, no method allows a
simultaneous change of the password value as well as the password or account state. Once
an account is locked, it must be explicitly unlocked. Typically, the database administrator (or
similar privileged user) performs the unlocking. This is primarily due to the fact that if an
account becomes locked, the database administrator is likely to know why. If an application
simply allowed a user to get into a locked account state and then unlock the account, there is
little point in implementing the rules that allow the lock to occur in the first place.

In this section, once again you use SQL*Plus to manually place your account into the
desired state; then you implement the functionality in .NET code to detect the situation and
notify the user. Here, you only detect the locked state and alert the user that the account is
locked. If you wish to implement the ability to unlock an account in your application, I
suggest you discuss this with your database administrator prior to doing so. Listing 7-29
illustrates how to lock an account using your administrative user in SQL*Plus.

■NOTE The act of locking or unlocking an account doesn’t affect the password per se. I included it in this
section because, from a user perspective, a locked account may be interpreted as a password issue.

Listing 7-29. Using SQL*Plus to Lock an Account

C:\>sqlplus oranetadmin@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 14:06:29 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> alter user oranetuser account lock;

User altered.

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 283

4258_Ch07_CMP1 9/30/04 7:41 PM Page 283

At this point, your oranetuser account is locked. Any attempt to connect to the database
generates a trappable error as illustrated in Listing 7-30.

Listing 7-30. Attempting to Connect to a Locked Account

C:\>sqlplus /nolog

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 14:07:30 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

SQL> connect oranetuser@oranet
Enter password:
ERROR:
ORA-28000: the account is locked

SQL> exit

C:\>

As you can see in Listing 7-30, Oracle generates an ORA-28000 error message when it
detects an attempt to connect with a locked account. Your test code from the PasswordLocked
project in Listing 7-31 (see this chapter’s folder in the Downloads section of the Apress website
for the complete sample code) takes advantage of this fact to trap the condition and display a
simple dialog that indicates that the condition has been trapped.

Listing 7-31. The Account Locked Test Code

private void btnConnect_Click(object sender, System.EventArgs e)
{
// build a connect string based on the user input
string l_connect = "User Id=" + txtUserName.Text + ";" +
"Password=" + txtCurrentPassword.Text + ";" +
"Data Source=" + txtTNSAlias.Text;

OracleConnection oraConn = new OracleConnection(l_connect);

try
{
// attempt to open a connection
// this should fail since we have locked the account
oraConn.Open();

}
catch (OracleException ex)
{
// trap the "account is locked" error code
if (ex.Number == 28000)

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION284

4258_Ch07_CMP1 9/30/04 7:41 PM Page 284

{
// display a simple marker to indicate we trapped the error
MessageBox.Show("Trapped Locked Account", "Locked Account");

}
else
{
MessageBox.Show(ex.Message, "Error Occured");

}
}
finally
{
if (oraConn.State == System.Data.ConnectionState.Open)
{
oraConn.Close();

}
}

}

Figure 7-11 shows the design time representation of the form. This is the same form I
used in the previous samples except I’ve removed the New Password and Confirm Password
labels and text boxes.

Figure 7-11. The design time representation of the locked account form

When you run the sample code and attempt to log in to the database as the oranetuser
account as depicted in Figure 7-12, you should receive an error dialog.

Figure 7-12. The locked account test form at run-time

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 285

4258_Ch07_CMP1 9/30/04 7:41 PM Page 285

When you click the Connect button, you’re presented with the dialog in Figure 7-13.

Figure 7-13. The dialog indicating you trapped the locked account condition

Finally, to wrap-up your exploration of locked accounts, you’ll unlock the oranetuser
account in SQL*Plus using your administrative user. This is illustrated in Listing 7-32.

Listing 7-32. Unlocking an Account

C:\>sqlplus oranetadmin@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 14:09:09 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> alter user oranetuser account unlock;

User altered.

SQL> exit
Disconnected from Oracle Database 10g Enterprise Edition�
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

C:\>

Connection Pooling and Multiplexing
One of the design features of the .NET Framework is increased scalability and more prudent
resource usage. One way this design feature is exposed by the Oracle Data Provider for .NET is
through the connection pooling mechanism.

■NOTE The connection pooling mechanism isn’t limited to the Oracle Data Provider for .NET. Other data
providers can also expose the connection pooling feature.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION286

4258_Ch07_CMP1 9/30/04 7:41 PM Page 286

The term multiplexing can be confused with the term connection pooling, though they
represent distinct approaches to limiting resource usage. In a multiplexing configuration, a
single connection to the resource (a database, in your case) is shared by multiple clients of the
resource. The Oracle Data Provider for .NET doesn’t expose a multiplexing method. An appli-
cation (such as a middle-tier application) is responsible for creating the connection and
brokering its usage among its clients. However, the database itself supports a multiplexing
scheme through the shared server (formerly known as multi-threaded server) connection
type. We examined shared server and dedicated server modes in Chapter 1.

On the other hand, since the connection pooling functionality is directly exposed by
the data provider, and because it is trivial to implement, you use it as your resource saving
method. In fact, you have to explicitly not use the connection pooling feature, because it is
enabled by default.

In order to see how the connection pooling feature works, you’ll create two applications.
The first is a simple console application called NoConnectionPooling that explicitly disables
connection pooling. The other, called ConnectionPooling, uses the default value of having
connection pooling enabled. You’ll then run these applications and examine the connections
to your database in SQL*Plus. You incorporate a small pause function in your code that gives
you time to examine the connections in SQL*Plus. In order to examine the effect of the con-
nection pooling attribute, you have to do a bit of bouncing around between SQL*Plus and
your application.

In order to verify that the connection pooling attribute has been disabled and to see the
effects of this in SQL*Plus, create a new console application like the one in Listing 7-33.

Listing 7-33. A Console Application That Disables Connection Pooling

static void Main(string[] args)
{
// create a connection string to our standard database
// the pooling=false attribute disables connection pooling
string l_connect = "User Id=oranetuser;" +
"Password=demo;" +
"Data Source=oranet;" +
"pooling=false";

OracleConnection conn_1 = new OracleConnection(l_connect);
conn_1.Open();

// pause so we can monitor connection in
// SQL*Plus
Console.WriteLine("Connection 1 created... Examine in SQL*Plus");
Console.ReadLine();

conn_1.Dispose();

// pause so we can monitor connection in
// SQL*Plus
Console.WriteLine("Connection 1 disposed... Examine in SQL*Plus ");
Console.ReadLine();

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 287

4258_Ch07_CMP1 9/30/04 7:41 PM Page 287

OracleConnection conn_2 = new OracleConnection(l_connect);
conn_2.Open();

// pause so we can monitor connection in
// SQL*Plus
Console.WriteLine("Connection 2 created... Examine in SQL*Plus ");
Console.ReadLine();

conn_2.Dispose();

// pause so we can monitor connection in
// SQL*Plus
Console.WriteLine("Connection 2 disposed... Examine in SQL*Plus ");
Console.ReadLine();

}

Here, you repeatedly execute a query in SQL*Plus to monitor your connections. After each
Examine in SQL*Plus message, you toggle over to the window where you’re running SQL*Plus
and execute the query. The query simply displays your user name, the program that is execut-
ing, and the time the user logged on to the database. The time that the user logged in to the
database is important, because it is this that verifies that you are or aren’t using connection
pooling. If connection pooling isn’t being used, the time that the user logged in to the data-
base varies with the iterations of your query. If connection pooling is being used, the time
the user logged in to the database remains constant because the single connection is being
reused.

The steps you use to verify if connection pooling is or isn’t being used are as follows:

1. Once you have created and compiled your console application, open a command
prompt window, change to the directory that contains the executable for your test,
and execute the binary, as shown here:

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\NoConnectionPooling\bin\Debug>�
NoConnectionPooling.exe
Connection 1 created... Examine in SQL*Plus

2. Start a SQL*Plus session as illustrated here:

C:\>sqlplus oranetadmin@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jul 12 18:18:56 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> COL PROGRAM FORMAT A24
SQL> SELECT USERNAME,

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION288

4258_Ch07_CMP1 9/30/04 7:41 PM Page 288

2 PROGRAM,
3 TO_CHAR(LOGON_TIME,'HH24:MI:SS') LOGON_TIME
4 FROM V$SESSION
5 WHERE USERNAME = 'ORANETUSER';

USERNAME PROGRAM LOGON_TI
------------------------------ ------------------------ --------
ORANETUSER NoConnectionPooling.exe 18:18:56

1 row selected.

3. Press the Enter key to un-pause the application as illustrated in the following code:

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\NoConnectionPooling\bin\Debug>�
NoConnectionPooling.exe
Connection 1 created... Examine in SQL*Plus

Connection 1 disposed... Examine in SQL*Plus

4. Toggle over to the SQL*Plus session and re-execute the query by entering a single for-
ward slash (/) character and pressing Enter. The following code illustrates this:

SQL> /

no rows selected

Your query has returned no rows because the connection was disposed and you don’t
have connection pooling enabled.

5. Return to the application window and press the Enter key to un-pause the application
as illustrated here:

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\NoConnectionPooling\bin\Debug>�
NoConnectionPooling.exe
Connection 1 created... Examine in SQL*Plus

Connection 1 disposed... Examine in SQL*Plus

Connection 2 created... Examine in SQL*Plus

6. Return to the SQL*Plus session and re-execute the query as you did in step 4. The fol-
lowing code illustrates this.

SQL> /

USERNAME PROGRAM LOGON_TI
------------------------------ ------------------------ --------
ORANETUSER NoConnectionPooling.exe 18:28:58

1 row selected.

You can see that you’ve established a new connection and that this connection has a
different logon time from the previous connection.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 289

4258_Ch07_CMP1 9/30/04 7:41 PM Page 289

7. Return to the application window and press Enter to un-pause the application as illus-
trated here:

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\NoConnectionPooling\bin\Debug>�
NoConnectionPooling.exe
Connection 1 created... Examine in SQL*Plus

Connection 1 disposed... Examine in SQL*Plus

Connection 2 created... Examine in SQL*Plus

Connection 2 disposed... Examine in SQL*Plus

8. Return to SQL*Plus and re-execute the query. The following code contains the results:

SQL> /

no rows selected

Once again, your query doesn’t return results because you disposed of your second
connection.

9. Return to the application window and press Enter to un-pause the application. The
application terminates at this point.

In order to demonstrate connection pooling, you’ll use virtually the same code as you did
in Listing 7-33. The only difference between this code and the following code to demonstrate
connection pooling is that you remove the pooling=false attribute from the connection string.
Since pooling is True by default, this enables your application to take advantage of connection
pooling. Listing 7-34 contains the code you used in your connection pooling test application.

Listing 7-34. A Console Application That Uses Connection Pooling

static void Main(string[] args)
{
// create a connection string to our standard database
// the pooling attribute defaults to "true" so we
// do not need to include it to enable pooling
string l_connect = "User Id=oranetuser;" +
"Password=demo;" +
"Data Source=oranet";

OracleConnection conn_1 = new OracleConnection(l_connect);
conn_1.Open();

// pause so we can monitor connection in
// SQL*Plus
Console.WriteLine("Connection 1 created... Examine in SQL*Plus");
Console.ReadLine();

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION290

4258_Ch07_CMP1 9/30/04 7:41 PM Page 290

conn_1.Dispose();

// pause so we can monitor connection in
// SQL*Plus
Console.WriteLine("Connection 1 disposed... Examine in SQL*Plus ");
Console.ReadLine();

OracleConnection conn_2 = new OracleConnection(l_connect);
conn_2.Open();

// pause so we can monitor connection in
// SQL*Plus
Console.WriteLine("Connection 2 created... Examine in SQL*Plus ");
Console.ReadLine();

conn_2.Dispose();

// pause so we can monitor connection in
// SQL*Plus
Console.WriteLine("Connection 2 disposed... Examine in SQL*Plus ");
Console.ReadLine();

}

You perform the same steps as you did with the no connection pooling example. How-
ever, the results of your connection monitoring query are slightly different.

1. Once you’ve created and compiled your console application, open a command
prompt window, change to the directory that contains the executable for your test, and
execute the binary. The following code illustrates this process:

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\NoConnectionPooling\bin\Debug>�
ConnectionPooling.exe
Connection 1 created... Hit enter key

2. Start a SQL*Plus session as illustrated here:

C:\>sqlplus oranetadmin@oranet

SQL*Plus: Release 10.1.0.2.0 - Production on Tue Jul 13 19:03:47 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 291

4258_Ch07_CMP1 9/30/04 7:41 PM Page 291

SQL> COL PROGRAM FORMAT A24
SQL> SELECT USERNAME,
2 PROGRAM,
3 TO_CHAR(LOGON_TIME,'HH24:MI:SS') LOGON_TIME
4 FROM V$SESSION
5 WHERE USERNAME = 'ORANETUSER';

USERNAME PROGRAM LOGON_TI
------------------------------ ------------------------ --------
ORANETUSER ConnectionPooling.exe 19:03:47

1 row selected.

3. Press the Enter key to un-pause the application as illustrated in the following code:

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\NoConnectionPooling\bin\Debug>�
ConnectionPooling.exe
Connection 1 created... Examine in SQL*Plus

Connection 1 disposed... Examine in SQL*Plus

4. Toggle over to the SQL*Plus session and re-execute the query by entering a single for-
ward slash (/) and pressing Enter as illustrated here:

SQL> /

USERNAME PROGRAM LOGON_TI
------------------------------ ------------------------ --------
ORANETUSER ConnectionPooling.exe 19:03:47

1 row selected.

Your query has returned a row even though the connection was disposed of. This is the
effect of connection pooling. Rather than terminate your connection, you’ve returned
it to the pool.

5. Return to the application window and press the Enter key to un-pause the application
as illustrated here:

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\NoConnectionPooling\bin\Debug>�
ConnectionPooling.exe
Connection 1 created... Examine in SQL*Plus

Connection 1 disposed... Examine in SQL*Plus

Connection 2 created... Examine in SQL*Plus

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION292

4258_Ch07_CMP1 9/30/04 7:41 PM Page 292

6. Return to the SQL*Plus session and re-execute the query:

SQL> /

USERNAME PROGRAM LOGON_TI
------------------------------ ------------------------ --------
ORANETUSER ConnectionPooling.exe 19:03:47

1 row selected.

Even though your application created a new connection, you can see that you haven’t
created a new database connection. The logon time remains constant—the same as it
was for the first connection.

7. Return to the application window and press Enter to un-pause the application:

C:\My Projects\ProOraNet\Oracle\C#\Chapter07\NoConnectionPooling\bin\Debug>�
ConnectionPooling.exe
Connection 1 created... Examine in SQL*Plus

Connection 1 disposed... Examine in SQL*Plus

Connection 2 created... Examine in SQL*Plus

Connection 2 disposed... Examine in SQL*Plus

8. Return to SQL*Plus and re-execute the query. Here are the results:

SQL> /

USERNAME PROGRAM LOGON_TI
------------------------------ ------------------------ --------
ORANETUSER ConnectionPooling.exe 19:03:47

1 row selected.

Once again, your query has returned the same result even though you disposed of your
second connection.

9. Return to the application window and press Enter to un-pause the application.

The application terminates. If you executed your query at this point, it wouldn’t return
a row because the application terminated.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION 293

4258_Ch07_CMP1 9/30/04 7:41 PM Page 293

In the second application, you can clearly see the impact of the pooling attribute. By allow-
ing connection pooling to take place, you were able to save resources because you didn’t need
to establish a second connection. You could reuse the existing connection, and thus bypass
the overhead associated with starting up a new connection to the database. As an application
developer, you have a great deal of control over the connection pooling environment. The
complete set of attributes is available in the Oracle Data Provider for .NET documentation set.
Connection pooling has a positive impact on web-based applications because they frequently
follow a pattern of receiving the request, getting data from the database, and returning results.
By maintaining a pool of readily available connections, a web-based application can reduce its
service cycle time.

By storing the connection pooling attributes in the application’s web.config (or app.con-
fig) file and reading them at application run-time, you can allow an application administrator
to tune the connection pool without rewriting or recompiling the application. An example of
this may look like the following:

<appSettings>
<add key="Connection Pooling" value="false"/>

</appSettings>

If you used the ConfigurationSettings.AppSettings.GetValues("Connection Pooling")
method to retrieve the value of the "Connection Pooling" key, the application would turn
connection pooling on or off in a dynamic run-time fashion.

Chapter 7 Wrap-Up
You began this chapter by looking at the default database connection and how to implement
the ability to connect to the default database in your code. We discussed how this ability can
be a benefit when you don’t know the TNS alias for a database in advance. After discussing a
default database connection, we examined how to create a tnsnames-less connection. This
type of connection affords you a great deal of flexibility, especially in a table-driven sort of
application.

We then examined the difference between system-level privileged and non-privileged
connections in a fair amount of detail. You created code to connect as a system-level privi-
leged user and using SQL*Plus, you learned how these types of connections work with the
database. In addition to privileged and non-privileged connections, you tackled the some-
times-confusing topic of operating system authentication. You saw how to connect to the
default database and a database via the TNS alias using operating system authentication.
After looking at the methods to employ authentication by the operating system, you examined
a few areas that are common in environments where password rules and account lockout are
in effect. And finally, you finished the chapter by taking in a fairly lengthy set of examples that
illustrate how to use connection pooling. All in all, we covered a lot of ground in this chapter.

CHAPTER 7 ■ ADVANCED CONNECTIONS AND AUTHENTICATION294

4258_Ch07_CMP1 9/30/04 7:41 PM Page 294

