
Instrumented Code is Better
Code

Mark Williams

www.cheshamdbs.com

mawilliams@cheshamdbs.com

oradim.blogspot.com

It's more of a hope than a promise

• I will do my best to not simply stand here and
read each slide word for word with all the
excitement of a Steven Wright¹ comedy
presentation. I have been on the receiving end
of that before and I realize it isn't all that
exciting. OK, so maybe for this slide I am
breaking my own promise, but, hey it's more
of a hope than a promise and that has
consequences...

¹ http://humor.mcf.com/misc/stevenwright.html

Agenda

• The customary README.TXT information
• What I like to call themes
• What is better code?
• What is code instrumentation?
• Instrumentation implementation
• Timer frequency, resolution, and accounting

errors
• The cost of self-measurement
• CPU consumption and division of labor
• Why did I use punctuation only for questions?

README.TXT - 1

• The three W's: Who, What, Why
• Who?
• Mark Williams (in case you missed the first slide

or got into the wrong room)
– Pro .NET Oracle Programming (Apress, 2004)
– ODP.NET Column in Oracle Magazine
– Oracle® Database Express Edition 2 Day Plus .NET

Developer Guide 10g Release 2 (10.2) – contributor
– Various OTN articles
– Oracle ACE Director (sort of)
– Becoming an anachronism?

README.TXT – 1.1
• Interests (lots really, but here's a short list):
– Private pilot (not currently active though)

– Geometry/Trigonometry

– Languages (C/C++/C#/Assembly) – plan on Perl…
and dare I say Java?

– Languages (French/Welsh)

– British history (historical novels – Nigel Tranter)

– MotoGP (Rossi/Yamaha)

– Barclay's English Premier League (Liverpool)

– Learning piano

README.TXT - 2

• What? (As in what do I do? Not as in "What is
the average airspeed velocity of an unladen
swallow?")

• Even though I work for Oracle, this is not an
Oracle presentation – say what?

• Formerly on the Database Internals Team

• Let's call this middle bit a sabbatical, shall we?

• Now on Platforms BDE (Non-Windows)

README.TXT - 3

• Why?

• It's a topic in which I believe

• Hopefully the rest of the presentation will fill
out more details

• There is some "Gee whiz" information but not
much internals

• In a shocking turn of events, I don't know
everything

• That is, ∑ your experience > ∑ my experience

README.TXT - 4
• My development machine:

• Intel Core 2 Duo processor E6750 2.66Ghz

• 8 GB RAM (PC2-6400)

• Seagate Barracuda ST31000340AS (1 TB SATA)

• Currently Microsoft Vista x64 (Should I go
Linux? Swallow the Mac pill? O/S 2 Warp?)

• Visual Studio 2008 with VC++ feature pack and
SP1 (demos built as "Any CPU")

• CPU-Z used… I'm not a hardware person!

Fun with Themes

• These are some common themes for just
about any presentation I do…

• So, you may have seen them before

• Mileage may vary from presentation to
presentation

Theme #1

• Performance does not have to be advanced,
dark, hard, mysterious, undocumented, or
_underscored.

Theme #2
• Silver bullets usually are not and should not

be needed.

• For example, incorrect setting of
db_file_multiblock_read_count

• Subsequently sorted out...

• Shows up on a forum as "I set it to X and my
system performance increased 500%!!!"

• And before you know it...

• Which is why I am not a Silver Bullet fan or
generally a "Best Practices" fan

Theme #3

• Things you do outside of the database can
have an impact on things inside the database.

Theme #4

• System performance can be like an orchestra -
All sections and pieces need to work in
concert (pun intended?) with one another for
the piece as a whole to work.

Theme #5

• Begin at the beginning. Correct code should
not need workarounds at the database or
after deployment.

• Though I am a realist here and sometimes you
get that box of chocolates...

Theme #6

• My naïve definition of performance:

The overall time taken to perform a task

As measured at or by the client/user

Theme #7

• I'm pretty fond of quotes – such as:

• "If you can not measure it, you can not
improve it.", Lord Kelvin (1824-1907)

• "X-rays will prove to be a hoax.", Lord Kelvin

• "Don't confuse activity with
accomplishment.", Zig Ziglar

• "Oracle system performance and code
instrumentation? That's hot!", Anonymous

• Google to find citations…

 Assumption ¹
begin

 dbms_presenter.set_assumptions (

 primary_attendee => 'DBA',

 secondary_attendee => 'Developer',

 dev_language => 'C#',-- curly braces and ;

 app_type => null

);

end;

/

Some Time Definitions
• "I know you're in there, you're just out of

sight... Time passages…", Al Stewart

• Centisecond: 1/100'th of a second (0.01)

• Millisecond: 1/1,000'th of a second (0.001)

• Microsecond: 1/1,000,000 of a second
(0.000001)

• Nanosecond: 1/1,000,000,000 of a second
(0.000000001)

• Friday at 4:30 PM: Time of notice of new X?

Instrumented Code is Better Code

• Didn't things used to be simpler (but not
necessarily better)?

• If things are more complex, wouldn't
something that helps narrow down issues be
welcomed and used?

• Yet, code instrumentation in a corporate
application is rarely seen

• Why is that?

Instrumented Code is Better Code

• What is better code?

• Hint: Subjective and Objective

• You get decide

• But then you need to measure against your
decision(s)

Which Code is Better?

Behind Door #1
using System;

namespace HelloWorld {

 class Program {

 static void Main(string[] args) {

 Console.WriteLine("Hello, world.");

 }

 }

}

Behind Door #2
using System;

namespace HelloWorld

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello, world.");

 }

 }

}

Which Code is Better?
• OK, obviously code needs to compile and

execute (correctly)…

• For many environments whitespace (and the
kind of – space vs. tab) is not important, but it
can be… i.e. "make"

• For many people better code is code that
executes correctly, uses less resources, and is
quicker. 4 out of 5 managers said this is true.

• Not many year-end bonuses are given out for
blazing fast code that is not correct.

What is Code Instrumentation?

• It sounds complicated and involved – is it?
(Maybe just because it is new)

• Does it require advanced techniques?
• Here's my definition:
Code instrumentation is the strategic placement

of host-language constructs (function or
procedure calls) such that an application may
emit performance information at run-time.

What is Code Instrumentation?

• Isn't that just logging or debug code?

• Why is code instrumentation needed?

• It's laughably simple…

• Because now you can tell how long something
takes!

What is Code Instrumentation?

Have you ever seen a lawyer/legal show? If so,
you've likely at one point or another heard:

"It goes to intent, your honor!"

Survey Says…

Q: Is poor performance always the fault of the
database?

A: "It [performance] is many times an application
issue and when the application is spread over 14
tiers of complexity, tracking down the bottleneck is
grievously hard. If you just whip together an
application and throw it out there without any
thought to monitoring it over time, be prepared to
have poor performance and no clue as to why or
where."
- Instrumentation (http://tkyte.blogspot.com/2005/06/instrumentation.html)

Ever Seen Code Like This?

using System;

namespace HelloWorld {
 class Program {
 static void Main(string[] args) {
 Console.Write("Hello, world - ");

#if DEBUG
 Console.WriteLine("I'm a debug build!");
#else
 Console.WriteLine("I'm a release build!");
#endif
 }
 }
}

Ever had a Performance Ticket
with Oracle?

• Did they:

• Fly a specialist debug team out to your site

• Replace the Oracle binaries with debug builds

• Step through the code using a debugger

• Get the needed information

• Replace the debug builds with release builds

• Thank you and say, "Have a good day!"

• I suspect it was a bit different from this

Survey Says Part II…

"Also, make this instrumentation part of the
production code, don't leave it out! Why?
Because, funny thing about production - you
are not allowed to drop in "debug" code at
the drop of a hat, but you are allowed to
update a row in a configuration table, or in a
configuration file! Your trace code, like
Oracle's should always be there, just waiting
to be enabled."
- Instrumentation (http://tkyte.blogspot.com/2005/06/instrumentation.html)

 (Very) Quick Review of 10046 ²

• Several ways to enable:

• alter session, spfile, dbms_system

• Multiple levels (dictate what you get):

• Level 1 = Standard SQL_TRACE (i.e. SQL)

• Level 4 = Level 1 + binds

• Level 8 = Level 1 + waits (what are these?)

• Level 12 = Level 4 + Level 8

(Very) Quick Review of 10046

PARSE #5:c=15600,e=100024,p=4,cr=146,cu=0,mis=1,r=0,dep=0,og=1,
plh=3447538987,tim=592842132530

EXEC #5:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=3447538987,
tim=592842132530

WAIT #5: nam='SQL*Net message to client' ela= 3 driver id=1111838976 #bytes=1
p3=0 obj#=-1 tim=592842132884

WAIT #5: nam='db file sequential read' ela= 9756 file#=5 block#=83 blocks=1
obj#=70296 tim=592842142861

WAIT #5: nam='db file scattered read' ela= 849 file#=5 block#=84 blocks=5
obj#=70296 tim=592842143803

FETCH #5:c=0,e=0,p=6,cr=7,cu=0,mis=0,r=1,dep=0,og=1,plh=3447538987,
tim=592842132530

(Very) Quick Review of 10046

• MetaLink Note:601528.1 (Times Reported For
Waits in Trace File Are Too High)
– Windows: boot.ini "/usepmtimer"

– Linux: clock=pmtmr

– Sun Solaris 10 3/05 apply the 1/06 (Update 1)
Patch (or later)

• Bug 7522002 (Timing flaw in 10046 trace data)

Something a little bit extra

• Tanel Poder's blog has a recent and nice
discussion of Oracle diagnostic events

• http://blog.tanelpoder.com/2009/03/03/the-
full-power-of-oracles-diagnostic-events-part-
1-syntax-for-ksd-debug-event-handling/

Instrumentation Implementation

• Pseudo-code of basic instrumention:

t0 = get_current_timing_value();

perform_action();

t1 = get_current_timing_value();

duration = t1 - t0;

Instrumentation Implementation

• Warning! Remember my definition said
"strategic"?

int i = 0;

t0 = get_current_timing_value();

i++; // no way I would instrument this! Over-instrumentation warning!

t1 = get_current_timing_value();

duration = t1 - t0;

Instrumentation Implementation

• Using DateTime (in .NET land)

DateTime timeStart;
DateTime timeEnd;
double duration;

timeStart = DateTime.Now;

perform_action();

timeEnd = DateTime.Now;

duration = timeEnd.Subtract(timeStart).TotalSeconds;

Instrumentation Implementation

• Under the covers DateTime.Now is a call to
UtcNow.ToLocalTime (property.method)

• Which in turn ends up calling the
GetSystemTimeAsFileTime Win API function

• The end result is the current date and time for
the computer with the time zone taken into
account.

• gettimeofday if on *nix system (man)

• gethrtime & gethrvtime may be used (timing)

Instrumentation Implementation

• Using Stopwatch (again in .NET land)

long duration;

System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();

sw.Start();

perform_action();

sw.Stop();

duration = sw.ElapsedMilliseconds;

Instrumentation Implementation

• Stopwatch.Start calls the GetTimestamp method
which can return either the result of a call to the
QueryPerformanceCounter Win API function (if
high-resolution) or the number of system ticks
equivalent to the current DateTime object (if not
high-resolution) – more on ticks later…

• Stopwatch.Stop does the same thing but it also
increments the "elapsed" property. (Timespan)

• Stopwatch.ElapsedMilliseconds returns the total
measured milliseconds.

Instrumentation Implementation

• If you examine properties for the Stopwatch
class and the DateTime/TimeSpan structures
you'll see that they expose values in terms of
milliseconds…

• Pop Quiz: Incidentally what's the main
difference between a class and a structure
in .NET?

• In .NET classes are reference types (managed
heap, GC) whereas structures are value types
(stack).

Timer Frequency, Resolution, and
Accounting Errors

• As shown, when software measures its own
performance it:

• Obtains a discrete timing value

• Performs an action (or actions)

• Obtains another discrete timing value

• Calculates the difference

• Are there any problems with this?

Timer Frequency, Resolution, and
Accounting Errors

• What if an alarm was set for 06:00 AM and the
clock read as follows:

05:59 AM

Timer Frequency, Resolution, and
Accounting Errors

• Tick, tick, tick, tick (like a fixed metronome!)

• The disco flashback

• Frequency and resolution

1000 1001 1002 1003 1004 1005 1006

┼───────┼──────┼──────┼──────┼──────┼──────┼

 xx

The Beat Goes On

• Time keeps on slipping, slipping, slipping into
the future (Steve Miller Band, Fly Like an
Eagle)

• Run Queue Run (Starring Tom Hanks as the
operating system scheduler)

• Things can happen to your process/thread
whilst timing is in progress

 Gathering Timer Information ³

• Timer (Stopwatch) is likely based on a high-
resolution timer. The static "IsHighResolution"
field will report this. (I don't have a system
where this is "false".)

• Another helpful static field is "Frequency".
This is the number of ticks/second.

• We can calculate accuracy (resolution) in
terms of nanoseconds by dividing
1,000,000,000 by frequency.

Gathering Timer Information

• if (Stopwatch.IsHighResolution) {
...
}

• Int64 frequency = Stopwatch.Frequency;
• Int64 nanosecPerTick = (1000000000) /

frequency;
• Timer frequency in ticks per second = 14318180

(on my dev system)
• Timer is accurate within 69 nanoseconds (dev)
• That is, a pulse/tick every 69 nanoseconds

Gathering Timer Information

• Earlier I mentioned that Stopwatch and
TimeSpan expose properties in terms of
milliseconds…

• But, at least on my dev system, there is a
higher resolution available

• Stopwatch.ElapsedTicks property exposes
number of ticks (elapsed naturally) which can
be used with resolution….

• ElapsedTicks * 69 == Elapsed nanoseconds

Gathering Timer Information
• You should reset timer if using elapsed

property between retrieval of information
(elapsed just keeps growing and growing and
growing – i.e. start/stop/elapsed/start/stop…)

• The Stopwatch ticks are not the same as
DateTime/TimeSpan ticks… but a tick is a tick

• DateTime/TimeSpan ticks are 100 nanosecond
intervals (since 01/01/0001) and, as we now
know, Stopwatch ticks may be a different
interval (ticks are ticks, interval is different)

The Cost of Self-Measurement

• The Lilly Endowment Fund – what does this
have to do with instrumentation?

• The word "endowment" can have special
meaning

• There's this thing called "Endowment Effect"
• http://en.wikipedia.org/wiki/Endowment_effect

• Perceived loss of something currently
owned…

• Maybe the grass is not always greener?

The Cost of Self-Measurement

• This is one of the most often used excuses!
Chen Shapira: I've worked for an instrumentation

vendor, and I also talked to many of them as part of
my production DBA role. Whenever an
instrumentation vendor talks to a prospective
customer, the first question is always: "What is the
overhead?". Not "How it can help me?", "How much
I can expect to improve my performance?" or "Is it
easy to use?".

http://prodlife.wordpress.com/2009/02/04/psychology-of-instrumentation/

The Cost of Self-Measurement

• Here's a HotSos'ism (maybe just a Cary'ism)...

• Q: What's the fastest way to do something?

• A: Just don't do it (the Nike antithesis?)

• Umm, so, what's the slowest way to do
something?

• I don't know, maybe do it a bunch of times...

The Cost of Self-Measurement

• Here's a proposed method of calculating this
cost:
– Create a stopwatch (sw1)

– Create a stopwatch (sw2)

– Start sw1

– Loop 1,000,000 times and start/stop sw2

– Stop sw1

– Get elapsed milliseconds and divide by 1,000,000

The Cost of Self-Measurement

• This test results in an average time on my
main development system of a whopping
0.00124 ms (≈ 1 µs)

• That doesn't seem like a long time to me

• Of course this is just (an approximation of?)
the time for the Stopwatch code path… you
may do other things besides simply capture
the time information (like, say, write data to a
file or something crazy like that).

Hey! Another Quote!

• By judiciously instrumenting your applications
you have the ability to find performance issues at
run-time. That's important! A best practice?

"I'm suspicious about most so-called best
practices... There is one "best practice," though,
that I believe in deeply: "You should always
measure your application's performance and
target your optimization efforts at places where
your code will benefit from it most."

For Developers: Making Friends with the Oracle Database (http://method-
r.com/downloads/cat_view/38-papers-and-articles)

CPU Consumption and Division of
Labor

• It's been said that it's a binary world (or it
isn't…) There's 10

b
 kinds of people...

• So, your application is either consuming CPU
or it isn't.

• If it is consuming CPU that CPU can be in
either:
– Kernel mode

– User mode

CPU Consumption and Division of
Labor

• The Process class allows us to determine how much
CPU time has been used.

• There are three properties of interest for this purpose:
• TotalProcessorTime: The total processor time used by

this process.
• UserProcessorTime: The total processor time in user

mode.
• PrivilegedProcessorTime: The total processor time in

kernel mode.
• But that is for a process... aggregated/v$view...
• The ProcessThread class can be used to get this

information at the thread level.

CPU Consumption and Division of
Labor

• The Process class (eventually) calls the
GetProcessTimes Win API function.

• The ProcessThread class (eventually) calls the
GetThreadTimes Win API function.

• These functions take pointers to FILETIME
structures which are populated with kernel
and user values.

• getrusage if on *nix system (man)

CPU Consumption and Division of
Labor

• CPUTime Demo (mostly contrived)

• Perform operations using kernel & user CPU

• Create a file, write to it, and delete it – kernel

• Compute a square of a value - user

• Display results

• Total Processor Time: 216 ms

• Privileged Processor Time: 76 ms

• User Processor Time: 140 ms

There's really a single reason…

• If you are not convinced that instrumented
code is better code, there's really a single best
reason why this is so:

"Why guess when you can know?"
(Cary Millsap, For Developers: Making Friends with the Oracle Database
(http://method-r.com/downloads/cat_view/38-papers-and-articles) for one

example)

Closing Recommendations

• Do it! (In all layers)

• Modularize your implementation

• Create files (not on-screen)

• Develop in-house if you want - always do what
is best in your environment. (NIH concerns)

• Run-time enable, not compile-time

• Be aware of any security concerns – especially
if you mix instrumentation with debug/trace
data

Thanks!

	Instrumented Code is Better Code
	Slide 2
	Agenda
	README.TXT - 1
	README.TXT – 1.1
	README.TXT - 2
	README.TXT - 3
	README.TXT - 4
	Fun with Themes
	Theme #1
	Theme #2
	Theme #3
	Theme #4
	Theme #5
	Theme #6
	Theme #7
	Assumption
	Definitions
	Slide 19
	Slide 20
	Which Code is Better?
	Slide 22
	What is Code Instrumentation?
	Slide 24
	Slide 25
	Survey Says…
	Ever Seen Code Like This?
	Ever had a Performance Ticket with Oracle?
	Continuing That Quote…
	(Very) Quick Review of 10046
	Slide 31
	Slide 32
	Slide 33
	Instrumentation Implementation
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Timer Frequency, Resolution, and Accounting Errors
	Slide 42
	Slide 43
	The Beat Goes On
	Gathering Timer Information
	Slide 46
	Slide 47
	Slide 48
	The Cost of Self-Measurement
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	CPU Consumption and Division of Labor
	Slide 56
	Slide 57
	Slide 58
	There's really a single reason…
	Closing Recommendations
	PowerPoint Presentation

